pairlist
pairlist
Generates the pair list of atoms that are closer to each other than the given threshold under the periodic boundary conditions.
version 0.5.1.3
Usage
See pairlist.h
for the function definition and pairlist-test.c
for usage.
Python API is served in pairlist.py. The API document is here.
See benchmark.ipynb for the comparison with other methods.
Algorithm
A simple cell division algorithm is implemented.
Demo
It requires GenIce to make the test data.
% make test
Requirements
- python
- numpy
Bugs
1#!/usr/bin/env python 2# -*- coding: utf-8 -*- 3# even: stable; odd: develop 4""" 5.. include:: ./README.md 6""" 7 8import math 9import itertools as it 10import numpy as np 11from logging import getLogger 12from cpairlist import pairs, pairs2 13from typing import Generator 14 15__all__ = ["pairs_iter"] 16 17 18def Address(pos, grid): 19 # residents in each grid cell 20 mol = pos % 1 % 1 # avoid cancellation 21 return tuple((mol * grid).astype(int)) 22 23 24def ArrangeAddress(xyz, grid): 25 # residents in each grid cell 26 residents = dict() 27 for i in range(len(xyz)): 28 address = Address(xyz[i], grid) 29 if address not in residents: 30 residents[address] = set() 31 residents[address].add(i) 32 return residents 33 34 35def pairs_py(xyz, GX, GY, GZ): 36 grid = np.array([GX, GY, GZ]) 37 logger = getLogger() 38 logger.debug("START Arrange") 39 residents = ArrangeAddress(xyz, grid) 40 logger.debug("END Arrange") 41 42 # key-value pairs in the dictionary 43 donecellpair = set() 44 pairs = [] 45 for address in residents: 46 members = residents[address] 47 # neighbor cells 48 npa = np.array(address) 49 k = np.array([(npa + j + grid) % grid for j in range(-1, 2)]) 50 for a2 in it.product(k[:, 0], k[:, 1], k[:, 2]): 51 if address == a2: 52 if frozenset((address, a2)) not in donecellpair: 53 donecellpair.add(frozenset((address, a2))) 54 for a, b in it.combinations(members, 2): 55 pairs.append((a, b)) 56 else: 57 if a2 in residents: 58 if frozenset((address, a2)) not in donecellpair: 59 donecellpair.add(frozenset((address, a2))) 60 for a in members: 61 for b in residents[a2]: 62 pairs.append((a, b)) 63 return np.array(pairs) 64 65 66def pairs2_py(xyz, xyz2, GX, GY, GZ): 67 grid = np.array([GX, GY, GZ]) 68 return _pairs_hetero(xyz, xyz2, grid) 69 70 71def _pairs_hetero(xyz, xyz2, grid): 72 logger = getLogger() 73 logger.debug("START Arrange") 74 residents = ArrangeAddress(xyz, grid) 75 residents2 = ArrangeAddress(xyz2, grid) 76 logger.debug("END Arrange") 77 78 # key-value pairs in the dictionary 79 donecellpair = set() 80 pairs = [] 81 for address in residents: 82 members = residents[address] 83 ix, iy, iz = address 84 # neighbor cells 85 npa = np.array(address) 86 k = np.array([(npa + j + grid) % grid for j in range(-1, 2)]) 87 for a2 in it.product(k[:, 0], k[:, 1], k[:, 2]): 88 if a2 in residents2: 89 if not ((address, a2) in donecellpair): 90 donecellpair.add((address, a2)) 91 for a in members: 92 for b in residents2[a2]: 93 pairs.append((a, b)) 94 return np.array(pairs) 95 96 97# assume xyz and box are numpy.array 98def pairs_fine_slow(xyz, rc, cell, grid=None, distance=True): 99 logger = getLogger() 100 if grid is None: 101 grid = determine_grid(cell, rc) 102 for i, j in pairs(xyz, *grid): 103 moli = xyz[i] 104 molj = xyz[j] 105 d = moli - molj 106 d -= np.floor(d + 0.5) 107 d = np.dot(d, cell) 108 rr = np.dot(d, d) 109 if rr < rc**2: 110 if distance: 111 yield i, j, math.sqrt(rr) 112 else: 113 yield i, j 114 115 116def pairs_nopbc_iter(pos, maxdist=None, pos2=None, distance=False): 117 """ 118 Iterator to find pairs in an open space. 119 """ 120 # assert pos2 is None, "Pairs for hetero group without PBC is not implemented yet." 121 122 def assign_to_bins(atoms): 123 # occupants[x] is a list of atom labels in a bin x. 124 occupants = dict() 125 for i, pos in enumerate(atoms): 126 # from position to bin 127 ipos = tuple(np.floor(pos / maxdist).astype(int)) 128 # insert the atom in the bin 129 if ipos not in occupants: 130 occupants[ipos] = [] 131 occupants[ipos].append(i) 132 return occupants 133 134 def nearby(A, hetero=False): 135 """ 136 Obtain the list of atoms near A. 137 138 A: Label of the target atom 139 """ 140 # bin of A 141 p, q, r = np.floor(pos[A] / maxdist).astype(int) 142 143 # adjacent bins 144 for ix in range(p - 1, p + 2): 145 for iy in range(q - 1, q + 2): 146 for iz in range(r - 1, r + 2): 147 if (ix, iy, iz) in occupants: 148 # candidates for the neighbors 149 for B in occupants[ix, iy, iz]: 150 # avoid double counts. 151 if hetero: 152 # relative vector 153 d = pos[A] - pos2[B] 154 d2 = d @ d 155 # if the distance is shorter than the threshold, 156 if d2 < maxdist**2: 157 yield B, d2**0.5 158 elif A < B: 159 # relative vector 160 d = pos[A] - pos[B] 161 d2 = d @ d 162 # if the distance is shorter than the threshold, 163 if d2 < maxdist**2: 164 yield B, d2**0.5 165 166 if pos2 is None: 167 # homo pairs 168 occupants = assign_to_bins(pos) 169 for i in range(len(pos)): 170 for j, L in nearby(i): 171 if distance: 172 yield i, j, L 173 else: 174 yield i, j 175 176 else: 177 # hetero pairs 178 occupants = assign_to_bins(pos2) 179 for i in range(len(pos)): 180 for j, L in nearby(i, hetero=True): 181 if distance: 182 yield i, j, L 183 else: 184 yield i, j 185 186 187# wrapper 188def pairs_iter( 189 pos: np.ndarray, 190 maxdist: float = None, 191 cell: np.ndarray[3, 3] = None, 192 fractional: bool = True, 193 pos2: np.ndarray = None, 194 rc: float = None, 195 distance: bool = True, 196 _raw: bool = False, 197 _engine=(pairs, pairs2), 198) -> Generator[tuple, None, None]: 199 """Yields pairs within the specified distance. 200 201 Args: 202 pos (np.ndarray): Positions of the atoms. (in fractional or absolute coordinate) 203 maxdist (formerly rc) (float, optional): Upper limit of the pair distance (in the same unit as the cell). Defaults to None. 204 cell (np.ndarray[3, 3], optional): Shape of the cell in a 3x3 numpy array. [[ax,ay,az],[bx,by,bz],[cx,cy,cz]]. Defaults to None. 205 fractional (bool, optional): If true, pos must be given in fractional coordinate. Defaults to True. 206 pos2 (np.ndarray, optional): Specify when you want to find the pairs between two sets of positions. Defaults to None. 207 distance (bool, optional): If true, distance between two positions are also returned. Defaults to True. 208 209 Yields: 210 Generator[tuple, None, None]: indices of a pair | indices and the distance between the pair (distance=True) 211 """ 212 logger = getLogger() 213 if rc is not None: 214 logger.warning("rc is deprecated. Use maxdist instead.") 215 assert maxdist is None, "rc and maxdist are specified at a time." 216 maxdist = rc 217 if cell is None: 218 return pairs_nopbc_iter(pos, maxdist=maxdist, pos2=pos2, distance=distance) 219 grid = None 220 if fractional: 221 rpos = pos 222 rpos2 = pos2 223 else: 224 celli = np.linalg.inv(cell) 225 rpos = pos @ celli 226 if pos2 is None: 227 rpos2 = None 228 else: 229 rpos2 = pos2 @ celli 230 231 if rpos2 is None: 232 return pairs_fine( 233 rpos, 234 maxdist, 235 cell, 236 grid=grid, 237 distance=distance, 238 raw=_raw, 239 engine=_engine[0], 240 ) 241 else: 242 return pairs_fine_hetero( 243 rpos, 244 rpos2, 245 maxdist, 246 cell, 247 grid=grid, 248 distance=distance, 249 raw=_raw, 250 engine=_engine[1], 251 ) 252 253 254# fully numpy style 255def pairs_fine(xyz, rc, cell, grid=None, distance=True, raw=False, engine=pairs): 256 logger = getLogger() 257 if grid is None: 258 grid = determine_grid(cell, rc) 259 p = engine(xyz, *grid) 260 idx0 = p[:, 0] 261 # for i in range(idx0.shape[0]): 262 # if idx0[i] > 1000: 263 # print(i,idx0[i]) 264 idx1 = p[:, 1] 265 p0 = xyz[idx0] 266 p1 = xyz[idx1] 267 d = p0 - p1 268 d -= np.floor(d + 0.5) 269 a = np.dot(d, cell) 270 L = np.linalg.norm(a, axis=1) 271 cond = L < rc 272 # pickup elements satisfying the condition. 273 j0 = np.compress(cond, idx0) 274 j1 = np.compress(cond, idx1) 275 if raw: 276 if not distance: 277 return j0, j1 278 else: 279 Ls = np.compress(cond, L) 280 return j0, j1, Ls # no zipping 281 else: 282 if not distance: 283 return np.column_stack((j0, j1)) 284 else: 285 Ls = np.compress(cond, L) 286 # return np.column_stack(j0, j1) all the values becomes float... 287 return zip(j0, j1, Ls) # list of tuples 288 289 290def pairs_crude(xyz, rc, cell, distance=True): 291 logger = getLogger() 292 # logger.debug(xyz) 293 logger.debug(rc) 294 logger.debug(cell) 295 logger.debug(distance) 296 for i, j in it.combinations(range(len(xyz)), 2): 297 moli = xyz[i] 298 molj = xyz[j] 299 d = moli - molj 300 d -= np.floor(d + 0.5) 301 r = np.dot(d, cell) 302 rr = np.dot(r, r) 303 304 if rr < rc**2: 305 # logger.debug((d,r,rr,rc**2)) 306 if distance: 307 yield i, j, math.sqrt(rr) 308 else: 309 yield i, j 310 311 312# assume xyz and box are numpy.array 313def pairs_fine_hetero_slow(xyz, xyz2, rc, cell, grid=None, distance=True): 314 if grid is None: 315 grid = determine_grid(cell, rc) 316 for i, j in pairs2(xyz, xyz2, *grid): 317 moli = xyz[i] 318 molj = xyz2[j] 319 d = moli - molj 320 d -= np.floor(d + 0.5) 321 d = np.dot(d, cell) 322 rr = np.dot(d, d) 323 324 if rr < rc**2: 325 if distance: 326 yield i, j, math.sqrt(rr) 327 else: 328 yield i, j 329 330 331def pairs_fine_hetero( 332 xyz, xyz2, rc, cell, grid=None, distance=True, raw=False, engine=pairs2 333): 334 logger = getLogger() 335 if grid is None: 336 grid = determine_grid(cell, rc) 337 p = engine(xyz, xyz2, *grid) 338 idx0 = p[:, 0] 339 idx1 = p[:, 1] 340 p0 = xyz[idx0] 341 p1 = xyz2[idx1] 342 d = p0 - p1 343 d -= np.floor(d + 0.5) 344 a = np.dot(d, cell) 345 L = np.linalg.norm(a, axis=1) 346 cond = L < rc 347 # pickup elements satisfying the condition. 348 j0 = np.compress(cond, idx0) 349 j1 = np.compress(cond, idx1) 350 if raw: 351 if not distance: 352 return j0, j1 353 else: 354 Ls = np.compress(cond, L) 355 return j0, j1, Ls # no zipping 356 else: 357 if not distance: 358 return np.column_stack((j0, j1)) 359 else: 360 Ls = np.compress(cond, L) 361 # return np.column_stack(j0, j1) all the values becomes float... 362 return zip(j0, j1, Ls) # list of tuples 363 364 365# @lru_cache(maxsize=None) 366def determine_grid(cell, radius): 367 """ 368 Determine grid division based on the cutoff radius. 369 """ 370 logger = getLogger() 371 ct = cell # .transpose() 372 # Cell vectors 373 a = ct[0] 374 b = ct[1] 375 c = ct[2] 376 logger.debug("cell a {0}".format(a)) 377 logger.debug("cell b {0}".format(b)) 378 logger.debug("cell c {0}".format(c)) 379 # Edge lengths 380 al = np.linalg.norm(a) # vector length 381 bl = np.linalg.norm(b) 382 cl = np.linalg.norm(c) 383 # Unit vectors of the axes. 384 ae = a / al # unit vectors 385 be = b / bl 386 ce = c / cl 387 # Distance between the parallel faces 388 an = np.dot(a, np.cross(be, ce)) # distance to the bc plane 389 bn = np.dot(b, np.cross(ce, ae)) 390 cn = np.dot(c, np.cross(ae, be)) 391 # required number of grid cells 392 gf = np.array([an / radius, bn / radius, cn / radius]) 393 if gf[0] < 1.0: 394 gf[0] = 1.0 395 if gf[1] < 1.0: 396 gf[1] = 1.0 397 if gf[2] < 1.0: 398 gf[2] = 1.0 399 # Check the lengths of four diagonals. 400 logger.debug("Grid divisions: {0}".format(np.floor(gf))) 401 # print(cell,radius,gf) 402 # import sys 403 # sys.exit(1) 404 return np.floor(gf).astype(int) 405 406 407def main(): 408 xyz = [] 409 for x in range(2): 410 for y in range(2): 411 for z in range(2): 412 xyz.append( 413 np.array((x / 100.0 + 1, y / 100.0 + 1, z / 100.0 + 1)) / 4.0 414 ) 415 xyz2 = [] 416 for x in range(2): 417 for y in range(2): 418 for z in range(2): 419 xyz2.append( 420 np.array((x / 100.0 + 2, y / 100.0 + 1, z / 100.0 + 1)) / 4.0 421 ) 422 xyz = np.array(xyz) 423 xyz2 = np.array(xyz2) 424 box = np.diag((4, 4, 4)) 425 rc = 1.000000001 426 for i, j, l in pairs_fine_hetero(xyz, xyz2, rc, box): 427 print(i, j, l) 428 429 430if __name__ == "__main__": 431 main()
def
pairs_iter( pos: numpy.ndarray, maxdist: float = None, cell: numpy.ndarray[3, 3] = None, fractional: bool = True, pos2: numpy.ndarray = None, rc: float = None, distance: bool = True, _raw: bool = False, _engine=(<built-in function pairs>, <built-in function pairs2>)) -> Generator[tuple, NoneType, NoneType]:
189def pairs_iter( 190 pos: np.ndarray, 191 maxdist: float = None, 192 cell: np.ndarray[3, 3] = None, 193 fractional: bool = True, 194 pos2: np.ndarray = None, 195 rc: float = None, 196 distance: bool = True, 197 _raw: bool = False, 198 _engine=(pairs, pairs2), 199) -> Generator[tuple, None, None]: 200 """Yields pairs within the specified distance. 201 202 Args: 203 pos (np.ndarray): Positions of the atoms. (in fractional or absolute coordinate) 204 maxdist (formerly rc) (float, optional): Upper limit of the pair distance (in the same unit as the cell). Defaults to None. 205 cell (np.ndarray[3, 3], optional): Shape of the cell in a 3x3 numpy array. [[ax,ay,az],[bx,by,bz],[cx,cy,cz]]. Defaults to None. 206 fractional (bool, optional): If true, pos must be given in fractional coordinate. Defaults to True. 207 pos2 (np.ndarray, optional): Specify when you want to find the pairs between two sets of positions. Defaults to None. 208 distance (bool, optional): If true, distance between two positions are also returned. Defaults to True. 209 210 Yields: 211 Generator[tuple, None, None]: indices of a pair | indices and the distance between the pair (distance=True) 212 """ 213 logger = getLogger() 214 if rc is not None: 215 logger.warning("rc is deprecated. Use maxdist instead.") 216 assert maxdist is None, "rc and maxdist are specified at a time." 217 maxdist = rc 218 if cell is None: 219 return pairs_nopbc_iter(pos, maxdist=maxdist, pos2=pos2, distance=distance) 220 grid = None 221 if fractional: 222 rpos = pos 223 rpos2 = pos2 224 else: 225 celli = np.linalg.inv(cell) 226 rpos = pos @ celli 227 if pos2 is None: 228 rpos2 = None 229 else: 230 rpos2 = pos2 @ celli 231 232 if rpos2 is None: 233 return pairs_fine( 234 rpos, 235 maxdist, 236 cell, 237 grid=grid, 238 distance=distance, 239 raw=_raw, 240 engine=_engine[0], 241 ) 242 else: 243 return pairs_fine_hetero( 244 rpos, 245 rpos2, 246 maxdist, 247 cell, 248 grid=grid, 249 distance=distance, 250 raw=_raw, 251 engine=_engine[1], 252 )
Yields pairs within the specified distance.
Arguments:
- pos (np.ndarray): Positions of the atoms. (in fractional or absolute coordinate)
- maxdist (formerly rc) (float, optional): Upper limit of the pair distance (in the same unit as the cell). Defaults to None.
- cell (np.ndarray[3, 3], optional): Shape of the cell in a 3x3 numpy array. [[ax,ay,az],[bx,by,bz],[cx,cy,cz]]. Defaults to None.
- fractional (bool, optional): If true, pos must be given in fractional coordinate. Defaults to True.
- pos2 (np.ndarray, optional): Specify when you want to find the pairs between two sets of positions. Defaults to None.
- distance (bool, optional): If true, distance between two positions are also returned. Defaults to True.
Yields:
Generator[tuple, None, None]: indices of a pair | indices and the distance between the pair (distance=True)