E. Espinosa, E. Molins, C. Lecomte,
Hydrogen bond strengths revealed by topological analyses
of experimentally observed electron densities,Chemical Physics Letters, 285 (1998) 170-173. [Back]
N. Agmon, Mechanism of hydroxide mobility, Chemical Physics Letters, 319 (2000) 247-252.
[Back, 2
J. S. Baker and S. J. Judd, Magnetic amelioration of scale formation, Water
Research,30 (1996) 247-260. [Back]
R. Gehr, Z. A. Zhai, J. A. Finch and
R. Rao, Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic-field, Water Research, 29 (1995) 933-940. [Back]
S. Ozeki, C. Wakai and S. Ono, Is a
magnetic effect on water-adsorption possible, Journal of Physical
Chemistry,95 (1991) 10557-10559. [Back]
J. M. D. Coey and S. Cass, Magnetic
water treatment, Journal of Magnetism and Magnetic Materials, 209 (2000) 71-74. [Back]
K. Higashitani, J. Oshitani and N.
Ohmura, Effects of magnetic field on water investigated
with fluorescent probes, Colloids and Surfaces A, 109 (1996) 167-173. [Back]
K. W. Busch and M. A. Busch, Laboratory
studies on magnetic water treatment and their relationship
to a possible mechanism for scale reduction, Desalination 109 (1997) 131-148. [Back]
M. Colic and D. Morse, The elusive
mechanism of the magnetic 'memory' of water, Colloids and Surfaces A, 154 (1999) 167-174. [Back, 2]
H. Hayashi., Microwater, The natural
solution (Water Institute, Tokyo, 1996). [Back, 2]
F. Franks, Water: 2nd Edition A
matrix of life, (Royal Society of Chemistry, Cambridge,
2000). [Back, 2a, 2b, 3, 4, 5]
(a) G. Hulthe, G. Stenhagen, O. Wennerström
and C-H. Ottosson, Water clusters studied by electrospray
mass spectrometry, Journal of Chromatography A, 777 (1997) 155-165. (b) M. Miyazaki, A. Fujii, T. Ebata and
N. Mikami, Infrared spectroscopic evidence for protonated
water clusters forming nanoscale cages, Science, 304 (2004) 1134-1137. (c) J. W. Shin, N.
I. Hammer, E. G. Diken, M. A. Johnson, R. S. Walters, T.
D. Jaeger, M. A. Duncan, R. A. Christie and K. D. Jordan
KD, Infrared signature of structures associated with the
H+(H2O)n (n=6
to 27) clusters, Science, 304 (2004)
1137-1140. (d) T. S. Zwier, The structure of protonated
water clusters, Science, 304 (2004)
1119-1120. [Back]
A. Khan, Ab initio studies of (H2O)20H+ and (H2O)21H+ prismic,
fused cubic and dodecahedral clusters: can H3O+ ion remain in cage cavity?, Chemical Physics Letters, 319 (2000) 440-450. [Back]
D. J. Wales and M. P. Hodges, Global
minima of water clusters [H2O]n, n=<21,
described by an empirical potential, Chemical Physics Letters, 286 (1998) 65-72. [Back, 2, 3]
R. B. Martin, Localized and spectroscopic
orbitals: Squirrel ears on water, Journal of Chemical Education, 65 (1988) 668-670. [Back]
M. Laing, No rabbit ears on water, Journal of Chemical Education, 64 (1987) 124-128. [Back]
(a) F. F. Muguet, MCSCF vibrational
spectra of the symmetric and asymmetric dihydronium cations, Journal of Molecular Structure, (Theochem)368 (1996) 173-196. (b) F. F. Muguet, Electronic excitation
spectra of the symmetric and assymmetric dihydronium cations, ECCC-5 (1998) [Back]
H. Nakayama, H. Yamaguchi, S. Sasaki
and H. Shimizu, Pressure-temperature phase diagram of molecular
crystal H2S by Raman spectroscopy, Physica
B219/220 (1996) 523-525. [Back, 2]
M. Castro, Homeopathy. A theoretical
framework and clinical application, J. Nurse-Midwifery, 44 (1999) 280-290. [Back]
(a) K. Linde, N. Clausius, G. Ramirez,
D. Melchart, F. Eitel, L. V Hedges and W. B Jonas, Are the
clinical effects of homeopathy placebo effects? A meta-analysis
of placebo-controlled trials, The Lancet, 350 (1997) 834-843; J. P. Vandenbroucke, Homoeopathy trials: going nowhere, The Lancet, 350 (1997) 824; M. J. S. Langman, Homeopathy trials: reason for good ones but are they warranted, The Lancet, 350 (1997) 825. (b) K. Linde, M. Scholz, G. Ramirez, N.
Clausius, D. Melchart, and W. B Jonas, Impact of study quality
on outcome in placebo-controlled trials of homeopathy, Journal of Clinical Epidemiology, 52 (1999) 631-636.
(c) H. Walach, Placebo and placebo effects – a concise review, Focus on Alternative and Complementary Therapies8 (2003) 178-187; T. J. Kaptchuk and F. G. Miller, Placebo effects in medicine, New England Journal of Medicine, 373 (2015) 8-9. [Back]
(a) N. N. Fedyakin, Change in the structure of water during condensation in capillaries, Kolloid Zh.24 (1962) 497-502; Colloid journal of the USSR, 24 (1962) 425-430;(b) B. V. Derjaguin, Effect of lyophile
surfaces on the properties of boundary liquid films,Faraday Discussions,42 (1966) 109-119; (c) E. R. Lippincott, R. R. Stromberg, W. H. Grant and G. L. Cessac, Polywater Vibrational spectra indicate unique stable polymeric structure, Science, 164 (1969) 1482-1497; (d) D. H. Everett, J. M. Haynes and P. J. McElroy, Colligative properties of anomalous water, Nature226 (1970) 1033-1037; the story is told in depth in the entertaining book: (e) F. Franks, Polywater, MIT press, 1981; B. A. Pethica, Polywater. Journal of Colloid and Interface Science, 88 (1982) 607. [Back]
D. L. Rousseau and S. P. S. Porto, Polywater;
polymer or artifact?, Science, 167 (1970) 1715-1719; P. Barnes, I. Cherry, J. L. Finney and S. Petersen, Polywater and polypollutants, Nature, 230 (1971) 31-33. [Back]
(a) S-Y Lo, A. Lo, L. W. Chong, L. Tianzhang,
L. H. Hua and X. Geng, Physical
properties of water with IE structures, Modern Physics Letters, B10 (1996) 921-930.
(b) Y. Wang and J.-C. Li, Inelastic neutron scattering techniques
and its application to IE water, in Proceedings of the
First International Symposium on Physical, Chemical and
Biological Properties of Stable Water (IE) Clusters,
ed. S.-Y. Lo and B. Bonavida (World Scientific Publishing,
Singapore, 1997) pp. 81-90; (c) S. Y. Lo, X. Geng and D. Gann, Evidence for the existence of stable-water-clusters at room temperature and normal pressure, Physics Letters, A373 (2009) 3872-3876; (d) F. Kožíšek, D. Auerbach, M. K. H. Gast and K. Lindner, Comment on: “Evidence for the existence of stable-water-clusters at room temperature and normal pressure” [Phys.Letters, A373(2009)3872] Physics Letters, A 377 (2013) 2826-2827; (e) S.-Y. Lo, Reply to the Comment by F. Kozisck et al. on “Evidence for the existence of stable-water-clusters at room temperature and normal pressure” [PhysicsLetters, A373(2009)3872] Physics Letters, A 377 (2013) 2828-2829. [Bcak, 2] [Back to Top ]
(a) M. Kakiuchi, Distribution of isotopic water molecules, H2O,
HDO, and D2O, in vapor and liquid phases in pure
water and aqueous solution systems,Geochimica Cosmochimica Acta, 64 (2000) 1485-1492. (b) M. Buzzacchi, E. Del Giudice, G. Preparata,
Anomalies in H2O-D 2O mixtures: Evidence
for the two-fluid structure of water, arXiv:cond-mat/9802117.
[Back]
W. A. P. Luck, The influence of ions on water structure and on aqueous systems, in Water and Ions
in Biological Systems, eds. A. Pullman, V. Vasileui
and L. Packer (Plenum: New York, 1985) 95-126. [Back]
Y. Marcus, Ion properties (Marcel
Dekker, Inc., New York, 1997). [Back]
A. V. Gubskaya and P. G. Kusalik, The
total molecular dipole moment for liquid water, Journal of Chem.
Phys.117 (2002) 5290-5302. [Back]
S. Prahl, Optical absorption of water.
Available at http://omlc.ogi.edu/spectra/water/index.html (Accessed 19 January 2001). The data combining low absorptions
extracted from S. G. Warren, Optical-constants of ice from
the ultraviolet to the microwave, Applied Optics, 23 (1984) 1206-1225 (revised data, 1995);
T. I. Quickenden and J. A. Irvin, Journal of Chem Phys.72 (1980) 4416; H. Buiteveld, J. M. H.
Hakvoort and M. Donze, SPIE Proceedings on Ocean
Optics XII,
edited by J. S. Jaffe, 2258 (1994) 174. The low absorptions
were used due to the UV and blue end spectrum being very
sensitive to the purity of the water. The linear scale inset infrared spectrum uses data from [2573]. [Back]
J. Benveniste, J. Aissa and D. Guilonnet,
The molecular signal is not functional in the absence of
"informed" water, FASEB 13 (1999) A163. Y. Thomas, M. Schiff, L. Belkadi, P. Jurgens, L. Kahhak and J. Benveniste, Activation of human neutrophils by electronically transmitted phorbol–myristate acetate, Medical Hypotheses54 (2000) 33-39. [Back]
R. Buchner, J. Barthel and J. Stauber,
The dielectric relaxation of water between 0° C and
35° C, Chemical Physics Letters, 306 (1999) 57-63. [Back, 2]
F. Bruge, M. Bernasconi.and M. Parrinello,
Ab initio simulation of rotational dynamics of solvated
ammonium ion in water, Journal of the American Chemical Society,121 (1999) 10883-10888. [Back]
P. Jenniskens, S. F. Banham, D.
F. Blake and M. R. S. McCoustra, Liquid water in the
domain of cubic crystalline ice Ic, Journal of Chemical Physics,107 (1997) 1232-1241.
[Back, 2]
P. L. Geissler, T. Van Voorhis and C.
Dellago, Potential energy landscape for proton transfer
in (H2O)3H+; comparison
of density functional theory and wavefunction-based methods, Chemical Physics Letters, 324 (2000) 149-155.
[Back]
K. D. Collins and M. W. Washabaugh,
The Hofmeister effect and the behaviour of water at interfaces, Quart. Review Biophys., 18 (1985)
323-422. [Back,2]
J. P. Devlin, C. Joyce and V. Buch,
Infrared spectra and structures of large water clusters, Journal of Physical Chemistry A104 (2000) 1974-1977.
[Back]
S. Woutersen and H. J. Bakker, Resonant
intermolecular transfer of vibrational energy in liquid
water, Nature, 402 (1999) 507-509.
[Back]
B. Schneider, K. Patel and H. M. Berman,
Hydration of the phosphate group in double-helical DNA, Biophysical Journal, 75 (1998) 2422-2434.
[Back]
P. Auffinger and E. Westhof, Water and
ion binding around RNA and DNA (C,G) oligomers, Journal of Molecular Biology,300 (2000) 1113-1131. [Back]
V. P. Denisov, G. Carlström, K.
Venu and B. Halle, Kinetics of DNA hydration, Journal of Molecular Biology,268 (1997) 118-136. [Back]
M. Feig and B. M. Pettitt, Modeling
high-resolution hydration patterns in correlation with DNA
sequence and conformation, Journal of Molecular Biology,286 (1999) 1075-1095. [Back]
M. -C. Bellissent-Funel, Hydration
on protein dynamics and function, Journal of Molecular Liquids, 84 (2000) 39-52. [Back]
G. W. Robinson and C. H. Cho, Role of
Hydration water in protein unfolding, Biophysical Journal, 77 (1999) 3311-3318. [Back]
K. Mizuno, Y. Kimura, H. Morichika,
Y. Nishimura, S. Shimada, S. Maeda, S. Imafuji and T. Ochi,
Hydrophobic hydration of tert-butyl alcohol probed
by NMR and IR, Journal of Molecular Liquids, 85 (2000) 139-152. [Back]
G. I. Makhtadze and P. l. Privalov,
Contribution of hydration to protein folding thermodynamics
I. The enthalpy of hydration, Journal of Molecular Biology,232 (1993) 639-657. [Back, 2] [Back to Top ]
P. l. Privalov and G. I. Makhtadze,
Contribution of hydration to protein folding thermodynamics II. The
entropy and Gibbs energy of hydration, Journal of Molecular Biology,232 (1993) 660-679. [Back, 2]
D. P. Shelton, Collective molecular
rotation in water and other simple liquids, Chemical Physics,
Letters, 325 (2000) 513-516. [Back]
G. E. Walrafen and Y-C. Chu, Nature,
of collagen-water hydration forces; a problem in water structure, Chemical Physics, 258 (2000) 427-446.
[Back]
A. K. Soper, The radial distribution
functions of water and ice from 220 to 673 K and at pressures
up to 400 MPa, Chemical Physics, 258 (2000) 121-137. [Back, 2, 3, 4]
A. E. Aleshin, B. Stoffer, L. M. Firsov,
B. Svensson and R. B. Honzatko, Glucoamylase-471 complexed
with acarbose, Biochemistry35 (1996) 8319-8328.
Protein Data Bank, 1GAH [Back]
T. H. Plumridge, G. Steele and R. D.
Waigh, Geometry-based simulation of the hydration of small
molecules, PhysChemComm. (2000) 8.
[Back]
D. T. Bowron, A. Filipponi, M. A. Roberts
and J. L. Finney, Hydrophobic hydration and the formation
of a clathrate hydrate, Physical Review Letters81 (1998) 4164-4167. [Back, 2]
D. Auerbach, Supercooling and the Mpemba
effect; when hot water freezes quicker than cold, American
Journal of Phys.63 (1995) 882-885; J. Walker, Hot water freezes faster than cold water. Why does it do so? Scientific American237 (2) (1977) 246-257; J. D. Brownridge, A search for the Mpemba effect: When hot water freezes faster then cold water, arXiv:1003.3185v1 [physics.pop-ph] (2010); P. Chaddah, S. Dash, Kranti Kumar and A. Banerjee, Overtaking while approaching equilibrium, arXiv:1011.3598v1 [cond-mat.stat-mech] (2010); M. Vynnycky and S. Kimura, Can natural convection alone explain the Mpemba effect? International Journal of Heat and Mass Transfer, 80 (2015) 243-255; G. S. Kell; The freezing of hot and cold water, American Journal of Phys. 37 (1969) 564-565; S. Esposito, R. De Risi and L. Somma, Mpemba effect and phase transitions in the adiabatic cooling of water before freezing, Physica A387 (2008) 757-763. [Back]
T. Quickenden and A. Hanlon, The colours
of water and ice, Chem. Br.36 (2000) 37-39; Chem. Br.37 (2001)
18. [Back]
(a) C. J. T. de Grotthuss, Sur la décomposition
de l'eau et des corps qu'elle tient en dissolution à
l'aide de l'électricité galvanique (On the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity). Ann.
Chim.LVIII (1806) 54-74. (b) S. l. Cukierman, Et tu, Grotthuss! and
other unfinished stories, Biochimica et Biophysica Acta, Bioenerg.1757 (2006) 876-885. [Back, 2]
D. Marx, M. E. Tuckerman, J. Hutter
and M. Parrinello, The nature of the hydrated excess proton
in water, Nature, 397 (1999) 601-604.
[Back]
H. Reichert, O. Klein, H. Dosch, M.
Denk, V. Honklmäkl, T. Lippmann and G. Reiter, Observation
of five-fold local symmetry in liquid lead, Nature, 408 (2000) 839-841. [Back]
S. T. Bramwell, Ferroelectric ice, Nature, 397 (1999) 212-213. [Back]
K. Johnson, "Water
buckyballs" Chemical, catalytic and cosmic implications, Infinite Energy6 (2000) 29-32.
K. H. Johnson and B. Zhang, Stabilized water nanocluster-fuel
emulsions designed through quantum chemistry, United
States Patent 5,997,590(1999).
[Back, 2, 3]
H. Sato, N. Matubayasi, M. Nakahara
and F. Hirata, Which carbon oxide is more soluble? Ab initio
study on carbon monoxide and dioxide in aqueous solution, Chemical Physics Letters, 323 (2000) 257
- 262. [Back, 2]
H. Kanno, K. Tomikawa and O. Mishima,
Reply to the comment on "Raman spectra of low- and
high-density amorphous ices" [Chemical Physics Letters, 293
(1998) 412], Chemical Physics Letters, 333 (2001) 324 - 325. [Back]
S. J. Suresh and V. M. Naik, Hydrogen
bond thermodynamic properties of water from dielectric constant
data, Journal of Chemical Physics,113 (2000)
9727-9732. [Back, 2]
J. R. Errington and P. G. Debenedetti,
Relationship between structural order and the anomalies
of liquid water, Nature, 409 (2001)
318-321. [Back, 2, 3]
Y. Ikezoe, N. Hirota, J. Nakagawa and
K. Kitazawa, Making water levitate, Nature, 393 (1998) 749-750. [Back]
B. Y. Zaslavsky, Aqueous two-phase
partitioning, (Marcel Dekker, Inc., New York, 1995).
[Back]
M. Sasai, Spatiotemporal heterogeneity
and energy landscape in liquid water, Physica A285 (2000) 315-324. [Back]
A. Khan, A liquid water model: Density
variation from supercooled to superheated states, prediction
of H-bonds, and temperature limits. Journal of Physical Chemistry104 (2000) 11268-11274. [Back, 2]
S. Rai, U.P. Singh, K. P. Singh and
A. Singh, Germination responses of fungal spores to magnetically
restructured water, Electro- Magnetobiol.13 (1994) 237-246. [Back]
H. Schober, M. M. Koza, A. Tölle,
C. Masciovecchio, F. Sette and F. Fujara, Crystal-like high
frequency phonons in the amorphous phases of solid water, Physical Review Letters85 (2000) 4100-4103.
[Back] [Back to Top ]
K. Kitazawa, Y. Ikezoe, H. Uetake and
N. Hirota, Magnetic field effects on water, air and powders, Physica B294-295 (2001) 709-714.
[Back, 2]
H. R. Zelsmann, Temperature dependence
of the optical constants for liquid H2O and D2O
in the far IR region, Journal of Molecular Structure, 350 (1995) 95-114. [Back, 2]
R. A Mayanovic, A. J. Anderson, W. A.
Bassett an I-M Chou, Hydrogen bond breaking in aqueous solutions
near the critical point, Chemical Physics Letters, 336 (2001) 212-218. [Back, 2]
G. Albiser, A. Lamiri and S. Premilat,
The A-B transition: temperature and base composition effects
on hydration of DNA, International Journal of Biological Macromolecules, 28 (2001) 199-203. [Back]
M. W. Mahoney and W. L. Jorgensen, A
five-site model for liquid water and the reproduction of
the density anomaly by rigid, nonpolarizable potential functions, Journal of Chemical Physics,112 (2000) 8910-8922.
[Back]
(The original TIP3P and TIP4P papers are W. L. Jorgensen, J. Chandrasekhar, J. D. Madura,
R. W. Impey, and M. L. Klein, Comparison of simple potential
functions for simulating liquid water, Journal of Chemical Physics,79 (1983) 926-935 and W. L. Jorgensen and
J. D. Madura, Temperature and size dependence for monte
carlo simulations of TIP4P water, Molecular Physics,56 (1985) 1381-1392, respectively.)
K. Kiyohara, K. E. Gubbins and A. Z.
Panagiotopoulos, Phase coexistence properties of polarizable
water models, Molecular Physics,94 (1998) 803-808. [Back]
M. W. Mahoney and W. L. Jorgensen, Diffusion
constant of the TIP5P model of liquid water, Journal of Chem.
Phys.114 (2001) 363-366. [Back]
L. A. Baez and P. Clancy, Existence
of a density maximum in extended simple point-charge water, Journal of Chemical Physics,101 (1994) 9837-9840.
[Back]
I. M. Svishchev, P. G. Kusalik, J. Wang
and R. J. Boyd, Polarizable point-charge model for water.
Results under normal and extreme conditions, Journal of Chem.
Phys.105 (1996) 4742-4750. [Back]
D. van der Spoel, P. J. van Maaren and
H. J. C. Berendsen, A systematic study of water models for
molecular simulation: Derivation of water models optimized
for use with a reaction field, Journal of Chemical Physics,108 (1998) 10220-10230. [Back]
S. McDonald, L. Ojamäe and S. J.
Singer, Graph theoretical generation and analysis of hydrogen-bonded
structures with applications to the neutral and protonated
water cube and dodecahedral clusters, Journal of Physical Chemistry
A 102 (1998) 2824-2832. [Back]
E. B. Starikov, K. Brasicke, E. W. Knapp.
and W. Saenger, Negative solubility coefficient of methylated
cyclodextrins in water: a theoretical study, Chemical Physics,
Letters, 336 (2001) 504-510. [Back]
G. S. Kell, Thermodynamic and transport
properties of fluid water, in Water A comprehensive
treatise, Vol. 1, Ed. F. Franks (Plenum Press, New
York, 1972) pp. 363-412. [Back, 2]
S. Woutersen, U. Emmerichs and H. J.
Bakker, Femtosecond mid-IR pump-probe spectroscopy of liquid
water: evidence for a two-component structure, Science, 278 (1997) 658-660. [Back, 2]
M. F. Kropman and H. J. Bakker, Dynamics
of water molecules in aqueous solvation shells, Science, 291 (2001) 2118-2120. [Back, 2, 3]
P. L. Geissler, C. Dellago, D. Chandler,
J. Hutter and M. Parrinello, Autoionization in liquid water, Science, 291 (2001) 2121-2124; W. C. Natzle and C. B. Moore, Recombination of hydrogen ion (H+) and hydroxide in pure liquid water. Journal of Physical Chemistry , 89 (1985) 2605-2612.
[Back]
K. X. Zhou, G. W. Lu, Q. C. Zhou, J.
H. Song, S. T. Jiang and H. R. Xia, Monte Carlo simulation
of liquid water in a magnetic field, Journal of Applied Physics,88 (2000) 1802-1805. [Back, 2]
J. W. Willard, Method of reducing the
incidence of infectious diseases and relieving stress in
livestock, United
States Patent 4,059,691(1977).
[Back]
A. Khan, Theoretical studies of NH4+(H2O)20 and NH3(H2O)20H+ clusters, Chemical Physics Letters, 338 (2001) 201-207. [Back]
H. Kanno, H. Yokoyama and Y. Yoshimura,
A new interpretation of anomalous properties of water based
on Stillinger's postulate, Journal of Physical Chemistry B105 (2001) 2019-2026; F. H. Stillinger, Water revisited, Science, 209 (1980) 451-457; F. H. Stllllnger and T. A. Weber, Inherent structure in water, Journal of Physical Chemistry 87 (1983) 2833-2840; G. E. Walrafen, W.-H. Yang and Y. C. Chu, Raman evidence for the clathrate like structure of highly supercooled water, In: Supercooled liquids, Ed. J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson (1997), ACS Symposium Series, Vol. 676, pp 287-308. [Back]
G. Graziano, Comment on "The mechanism
of hydrophobic solvation depends on solute radius" Journal of Physical Chemistry B 2000, 104, 1326. Journal of
Physical Chemistry B105 (2001) 2079-2081.
[Back]
S. W. Rick, Simulation of ice and liquid
water over a range of temperatures using the fluctuating
charge model, Journal of Chemical Physics,114 (2001) 2276-2283. [Back]
T. A. Halgren and W. Damm, Polarizable
force fields, Curr. Opin. Struct. Biol.11 (2001) 236–242. [Back]
J. M. Sorenson, G. Hura, R. M. Glaeser
and T. Head-Gordon, What can x-ray scattering tell us about
the radial distribution functions of water? Journal of Chem.
Phys. 113 (2000) 9149-9161. [Back, 2]
D. D. Klug, C. A. Tulk, E. C. Svensson,
C. K. Loong, Dynamics and structural details of amorphous
phases of ice determined by incoherent inelastic neutron
scattering, Physical Review Letters 83 (1999) 2584-2587. [Back] [Back to Top ]