Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3401- 3500

 

  1. Z.Zhu, H. Guo, X. Jiang, Y. Chen, B. Song, Y. Zhu and S. Zhuang, Reversible hydrophobicity-hydrophilicity
    transition modulated by surface curvature, The Journal of Physical Chemistry Letters, 9 (2018) 2346-2352. [Back]
  2. M. Szydagis, C. Knight and C, Levy, The Snowball Chamber: Neutron-induced nucleation in supercooled water
    arXiv:1807.09253v1 [physics.ins-det] 24 Jul 2018. [Back]
  3. R. Battino, T. R. Rettich and E. Wilhelm, Gas solubilities in liquid water near the temperature of the density maximum, Tmax (H2O) = 277.13 K, Monatshefte für Chemie - Chemical Monthly, 149 (2018) 219-230. [Back]
  4. X. Wu, W. Lu, L. M. Streacker, H. S. Ashbaugh and D. Ben-Amotz, Temperature-dependent hydrophobic crossover length scale and water tetrahedral order, The Journal of Physical Chemistry Letters, 9 (2018) 1012-1017. [Back, 2]
  5. H. Wei, E. P. Vejerano, W. Leng, Q. Huang, M. R. Willner, L. C. Marr and P. J. Vikesland, Aerosol microdroplets exhibit a stable pH gradient, Proceedings of the National Academy of Sciences, 115 (2018) 7272-7277; A. J. Colussi, Can the pH at the air/water interface be different from the pH of bulk water? Proceedings of the National Academy of Sciences, 115 (2018) E7887; P. J. Vikesland, H. Wei, Q. Huang, H. Guo and L. C. Marr, Microdroplet interfacial pH, the ongoing discussion, Proceedings of the National Academy of Sciences, 115 (2018) E7888-E7889. [Back]
  6. R. Sander, Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmospheric Chemistry and Physics, 15 (2015) 4399-4981. [Back]
  7. C. G. Pruteanu, G. J. Ackland, W. C. K. Poon and J. S. Loveday, When immiscible becomes miscible—Methane in water at high pressures. Scence Advances, 3 (2017) e1700240. [Back]
  8. A. V. Postnikov, I V. Uvarov, M. V Lokhanin and V. B. Svetovoy, High concentration of H2 and O2 nanobubbles in water electrolytes and their collective optical effect, AIP Conference Proceedings, 1884 (2017) 030003, DOI: 10.1063/1.5002513. [Back]
  9. T. Ishizaki, Y. Matsuda, T. Morita, Y. Nishiuchi, K. Tada, J. Nagahara and T. Hata, Cleaning effect by fine bubbles generated with gas–liquid share method , Journal of Chemical Engineering, 51 (2018) 170-174. [Back]
  10. I. Rad and G. H. Pollack, Cooling of pure water at room temperature by weak electric currents, Journal of Physical Chemistry B, 122 (2018) 7711-7717. [Back]
  11. X.-G. Wang and T. Carrington Jr, Computing vibration–rotation-tunnelling levels of HOD dimer, Physical Chemistry Chemical Physics, 21 (2019) 3527-3536. [Back]
  12. W. Makulski, M. Wilczek and K. Jackowski, 17O and 1H NMR spectral parameters in isolated water molecules, Physical Chemistry Chemical Physics, 20 (2018) 22468-22476. [Back]
  13. D. M. Camaioni, D. M. Chipman, M. A. Johnson, C. D. Jonah, G. A. Kimmel, J. H. Miller, T. N. Rescigno and S. S. Xantheas, Understanding the role of water on eectron-initiated processes and radical chemistry, Report of the Workshop held at Pacific Northwest National Laboratory", September 26-28, 2002, (2003) 1-76. [Back]
  14. P. D. Spencer, J. D. Riches and E. D. Williams, Exclusion zone water is associated with material that exhibits proton diffusion but not birefringent properties, Fluid Phase Equilibria, 466 (2018) 103-109. [Back]
  15. C. A. Sjogreen, D. A. L. Téllez, J. E. Rosas Pérez, P. C. P. Hurtado and J. Roa-Rojas, Experimental study of nanobubbles in salt solutions, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42 (2018) 41-48; DOI: 10.18257/raccefyn.543. [Back]
  16. P. Schienbein and D. Marx, Investigation concerning the uniqueness of separatrix lines separating liquidlike from gaslike regimes deep in the supercritical phase of water with a focus on Widom line concepts, Physical Review E, 98 (2018) 022104. [Back]
  17. G. Gomes and M. de Souza, Enhanced Grüneisen Parameter in supercooled water, (2018) arXiv:1808.00536v1 [cond-mat.stat-mech] 1 Aug 2018. [Back]
  18. T. Kaneko, J. Bai, T. Akimoto, J. S. Francisco, K. Yasuoka and X. C. Zeng, Phase behaviors of deeply supercooled bilayer water unseen in bulk water, Proceedings of the National Academy of Sciences of the United States of America, 115 (2018) 4839-4844. [Back]
  19. G. Camisasca, M. De Marzio, M. Rovere and P. Gallo, High density liquid structure enhancement in glass forming
    aqueous solution of LiCl, The Journal of Chemical Physics, 148 (2018) 222829. [Back]
  20. J. C. Palmer, Peter H. Poole, F. Sciortino and P. G. Debenedetti, Advances in computational studies of the liquid-liquid transition in water and water-like models, Chemical Reviews, 118 (2018) 9129-9151. [Back, 2, 3, 4]
  21. Z. Wang, S. Shi, S. Huang, J. Tang, T. Du, X. Cheng, R. Huang, and J.-Y. Chen, Effects of water content on evaporation and combustion characteristics of water emulsified diesel spray, Applied Energy, 226 (2018) 397-407. [Back]
  22. U. Einhorn-Stoll, Pectin-water interactions in foods - From powder to gel, Food Hydrocolloids, 78 (2018) 109-119. [Back]
  23. C. T. Nemes, C. J. Laconsay and J. M. Galbraith, Hydrogen-bonding from a valence bond theory perspective: the role of covalency, Physical Chemistry Chemical Physics, 20 (2018) 20963-20969; C.Hodges, Valence bond theory probes fundamental nature of hydrogen bonding, Chemistry World, 15(9) (2018) 32; Z. Zhang, D. Li, W. Jiang and Z. Wang, The electron density delocalization of hydrogen bond systems, Advances in Physics: X, 3 (2018) 1428915 [Back, 2]
  24. A. K. A. Ahmed, C. Sun, L. Hua, Z. Zhang, Y. Zhang, T. Marhaba and W. Zhang, Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: Effects of ionic strength, natural organic matters, and surfactants, Environmental Engineering Science, 35 (2018) Article in press, DOI: 10.1089/ees.2017.0377. [Back]
  25. G. Caron, M. Vallaro and G. Ermondi, Log P as a tool in intramolecular hydrogen bond considerations, Drug Discovery Today: Technologies | Physicochemical characterisation in drug discovery, 27 (2018) 65-70. [Back]  [Back to Top to top of page]
  26. H. S. Thoke, L. A. Bagatolli and L. F. Olsen, Effect of macromolecular crowding on the kinetics of glycolytic enzymes and the behaviour of glycolysis in yeast, Integrative Biology, 10 (2018) 587-597. [Back]
  27. H. D. Nagashima, K. Nemoto and R. Ohmura, Phase equilibrium for argon clathrate hydrate at the temperatures from 197.6 K to 274.1 K, Journal of Chemical Thermodynamics, 127 (2018) 86-91. [Back]
  28. L. X. Dang and G. K. Schenter, Rate theory of ion pairing at the water liquid–vapor interface: A case of sodium iodide, The Journal of Chemical Physics, 148 (2018) 222820. [Back]
  29. A. P. dos Santos and Y. Levin, Effective charges and zeta potentials of oil in water microemulsions in the presence of Hofmeister salts, The Journal of Chemical Physics, 148 (2018) 222817. [Back]
  30. J. T. Kelly, M. Mayer, A. C. Kennedy, C. Schemel and K. R. Asmis, Probing the propensity of perchlorate anions for surface solvation by infrared photodissociation spectroscopy, The Journal of Chemical Physics, 148 (2018) 222840. [Back]
  31. (a) A. K. Giri, F. Teixeira and M. N. D.S. Cordeiro, Structure and kinetics of water in highly confined conditions: A molecular dynamics simulation study, Journal of Molecular Liquids, 268 (2018) 625-636; (b) M. H. Köhler, J. R.Bordin, L. B. da Silva, M. C. Barbosa, Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes, Physica A, 490 (2018) 331-337; (c) S. Chakraborty, H. Kumar, C. Dasgupta and P. K. Maiti, Confined water: Structure, dynamics, and thermodynamics, Accounts of Chemical Research, 50 (2017) 2139-2146. [Back]
  32. J. Sahu and V. A. Juvekar, Development of a rationale for decoupling osmotic coef fi cient of electrolytes into electrostatic and nonelectrostatic contributions, Fluid Phase Equilibria, 460 (2018) 57-68; J. Sahu and V. A. Juvekar, Data on primary hydration characteristics of aqueous electrolytes, Data in Brief, 19 (2018) 486-494. [Back]
  33. S. V. Gudkov, E. L. Guryev, A.B. Gapeyev, M. G. Sharapov, N. F. Bunkin, A. V. Shkirin, T. S. Zabelina, A. P. Glinushkin, M. A. Sevost'yanov, K. N. Belosludtsev, A. V. Chernikov, V. I. Bruskov, A. V. Zvyagin , Unmodified hydrated С60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress, Nanomedicine, 15 (2019) 37-46. [Back]
  34. H. Sippola and P. Taskinen, Activity of supercooled water on the ice curve and other thermodynamic properties of liquid water up to the boiling point at standard pressure, Journal of Chemical Engineering Data, 63 (2018) 2986-2998. [Back, 2]
  35. B. Wozniak and J. Dera, Light absorption by water molecules and inorganic isubstances dissolved in sea water. (2007) In: Light Absorption in Sea Water. Springer, New York, NY, p 14. [Back]
  36. F. Novelli, F. Sebastiani, C. Hoberg, L. R. Pestana, K. C. Bennett, N. Stavrias, L. A. F. G. Van Der Meer, G. Schwaab, T. Head-Gordon and M. Havenith, Molecular alignment of bulk water: Observing a giant THz Kerr effect
    upon librational excitation, (2018) arXiv:1809.04261 [physics.chem-ph]. [Back]
  37. P. Lidon, S. C. Marker, J. J. Wilson, R. M. Williams, W. R. Zipfel and A. D. Stroock, Enhanced oxygen solubility in metastable water under tension, Langmuir, 34 (2018) 12017-12024; arXiv:1809.06605v1 [physics.chem-ph] 18 Sep 2018. [Back]
  38. R. Ludwig and A. Appelhagen, Calculation of clathrate-like water clusters including H2O-buckminsterfullerene, Angewandte Chemie Inernational Edition, 44 (2005) 811-815. [Back]
  39. N. Nirmalkar, A. W. Pacek and M. Barigou, On the existence and stability of bulk nanobubbles, Langmuir, 34 (2018) 10964-10973. [Back]
  40. D. Verreault, S. Alamdari, S. J. Roeters, R. Pandey, J. Pfaendtner and T Weidner, Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water, Physical Chemistry Chemical Physics, 20 (2018) 26926-26933. [Back]
  41. D. D. B. Koll and T. W. Cronin, Earth’s outgoing longwave radiation linear due to H2O greenhouse effect, Proceedings of the National Academy of Sciences, (2018) Article in press, DOI: 10.1073/pnas.1809868115. [Back]
  42. S. Magar, D. Nayak, U. B. Mahajan, K. R. Patil, S. D. Shinde, S. N. Goyal, S. Swaminarayan, C. R. Patil, S. Ojha5 and C. N. Kundu, Ultra-diluted Toxicodendron pubescens attenuates proinflammatory cytokines and ROS mediated neuropathic pain in rats, Scientific Reports, 8 (2018) 13562. [Back]
  43. G. Guglielmi, Peer-reviewed homeopathy study sparks uproar in Italy, Nature, 562 (2018) 173-174; E. Bucci, Research Integrity Solutions, Preliminary findings on a highly publicized paper on homeopathy, 03. October 2018. [Back]
  44. M. A Abdel-Fatah, M. M. Elsayed, G. A Al Bazedi, Design of reverse osmosis desalination plant in Suez City (Case Study), Journal of Scientific and Engineering Research, 3 (2016) 149-156. [Back]
  45. J. S. Lomas, Intramolecular O―H⋯O and C―H⋯O hydrogen bond cooperativity in D‐glucopyranose and D‐galactopyranose—A DFT/GIAO, QTAIM/IQA, and NCI approach, Magnetic Resonance in Chemistry, 56 (2018) 748-766. [Back]
  46. E. Jambon-Puillet, N. Shahidzadeh and D. Bonn, Singular sublimation of ice and snow crystals, Nature Communications, 9 (2018) 4191. [Back, 2]
  47. M. S. Bodnarchuk, Water, water, everywhere. . . It’s time to stop and think, Drug Discovery Today, 21 (2016) 1139-1146. [Back]
  48. A. Tanioka, M. Kurihara and H. Sakai, Megaton water system: High salinity pressure retarded osmosis, In, Ed. S. Sarp and N. Hilal, Membrane-based salinity gradient processes for water treatment and power generation, Elsevier B.V. (2018) pp 319-334, DOI: 10.1016/B978-0-444-63961-5.00012-2. [Back]
  49. Y. Sekine, H. Takagi, S. Sudo, Y. Kajiwara, H. Fukazawa and T. Ikeda-Fukazawa, Dependence of structure of polymer side chain on water structure in hydrogels, Polymer, 55 (2014) 6320-6324. [Back]
  50. X. Yan, A. Stocco, J. Bernard and F. Ganachaud, Freeze/thaw-induced carbon dioxide trapping promotes
    emulsification of oil in water, Journal of Physical Chemistry Letters, 9 (2018) 5998-6002. [Back, 2, 3]  [Back to Top to top of page]
  51. C. Bottari, L. Comez, M. Paolantoni, S. Corezzi, F.D'Amico, A. Gessini, C. Masciovecchio and B. Rossi, Hydration properties and water structure in aqueous solutions of native and modified cyclodextrins by UV Raman and Brillouin scattering, Journal of Raman Spectroscopy, (2018) 1-10, DOI: 10.1002/jrs.5372. [Back]
  52. L. Maugeri, S. Busch, S. E. McLain, L. C. Pardo, F. Bruni and M. A. Ricci, Structure-activity relationships in carbohydrates revealed by their hydration, Biochimica et Biophysica Acta (BBA) - General Subjects, 1861 (2017) 1486-1493; L. Ruggiero, A. Sodo, F. Bruni and M. A. Ricci, Hydration of monosaccharides studied by Raman scattering, Journal of Raman Spectroscopy, (2018) 1-10, DOI: 10.1002/jrs.5351. [Back]
  53. A. Rosu-Finsen and C. G. Salzmann, Origin of the low-temperature endotherm of acid-doped ice VI: New hydrogen-ordered phase of ice or deep glassy states? Chemical. Sciience, 10 (2018) 515-523; S. Sharp, Study challenges hydrogen-ordered ice hypothesis, Chemistry World, 7 Feb (2019); A. Rosu-Finsen, A. Amon, J. A. Armstrong, F. Fernandez-Alonso and C. G Salzmann, Deep-glassy ice VI revealed with a combination of neutron spectroscopy and diffraction, Journal of Physical Chemistry Letters, (2020) Article in press, doi:: 10.1021/acs.jpclett.0c00125. [Back, 2]
  54. H. Lischka, M. Barbatti, F. Siddique, A. Das and A.J.A. Aquino, The effect of hydrogen bonding on the nonadiabatic dynamics of a thymine-water cluster, Chemical Physics (2018) Article in press, DOI: 10.1016/j.chemphys.2018.07.050. [Back]
  55. (a)J. Liu, X. He, J. Z. H. Zhang and L.-W. Qi, Hydrogen-bond structure dynamics in bulk water: insights from ab initio simulations with coupled cluster theory, Chemical Science, 9 (2018) 2065-2073;( b) J. Liu, X. He and J. Z. H. Zhang, Structure of liquid water - A dynamical mixture of tetrahedral and ‘Ring-and-Chain’ like structures, Physical Chemistry Chemical Physics, 19 (2017) 11931-11936. [Back, 2]
  56. S. Dueby, V. Dubey and S. Daschakraborty, Decoupling of self diffusion from viscosity of supercooled water: Role of translational jump-diffusion, Journal of Physical Chemistry. B. 123 (2019) 7178; arXiv:1810.03800 [physics.chem-ph] (2018); V. Dubey, S. Erimban, S. Indra and S. Daschakraborty, Understanding the origin of the breakdown of the Stokes-Einstein relation in supercooled water at different temperature-pressure conditions, Journal of Physical Chemistry B, (2019) Article in press, DOI: 10.1021/acs.jpcb.9b08309; P. M. de Hijes, E. Sanz, L. Joly, C. Valeriani and F. Caupin, Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations, The Journal of Chemical Physics, 149 (2018) 094503, arXiv:1805.11957v2 [physics.chem-ph] 27 Jul 2018. [Back]
  57. M. Heyden, J. Sun, S. Funkner, G. Mathias, H. Forbert, M. Havenith and D. Marx, Dissecting the THz spectrum of liquid water from first principles via correlations in time and space, Proceedings of the National Academy of Sciences, 107 (2010) 12068-12073. [Back]
  58. G. Stirnemann, E. Wernersson, P. Jungwirth, and D. Laage, Mechanisms of acceleration and retardation of water dynamics by ions, Journal of the American Chemical Society, 135 (2013) 11824-11831; Q. Zhang, T.M. Wu, C. Chen, S. Mukamel and W. Zhuang, Molecular mechanism of water reorientational slowing down in concentrated ionic solutions, Proceedings of the National Academy of Sciences, 114 (2017) 10023-10028; G. Stirnemann, P. Jungwirth and D. Laage, Water dynamics in concentrated electrolytes: Local ion effect on hydrogen-bond jumps rather than collective coupling to ion clusters, Proceedings of the National Academy of Sciences, (2018) Article in press, DOI: 10.1073/pnas.1803988115; Q. Zhang, T.M. Wu, C. Chen, S. Mukamel and W. Zhuang, Reply to tirnemann: Frame retardation is the key reason behind the general slowdown of water reorientation dynamics in concentrated electrolytes, Proceedings of the National Academy of Sciences, 115 (2018) E4955-E4956. [Back]
  59. L. M. Klevay, Some bottled water may be salubrious, Journal of Trace Elements in Medicine and Biology, 48 (2018) 188-189. [Back]
  60. Changing relations between proteins and osmolytes: a choice of nature, Physical Chemistry Chemical Physics, 20 (2018) 20315-20333; A. Rani and P. Venkatesu, Correction: Changing relations between proteins and osmolytes: a choice of nature, Physical Chemistry Chemical Physics, 20 (2018) 23151. [Back]
  61. F. Okada, K. Nagashima, T. Kobayashi, Production of 160 mg/L ozone water using circulating water electrolysis system, Electrochimica Acta, 294 (2019) 391-397. [Back]
  62. M. Mandziuk, From the trimer, through the pentamer, to liquid water, Journal of Molecular Structure, 1177 (2019) 168-176. [Back, 2]
  63. T. Nakamura, M. Matsumoto, T. Yagasaki and H.Tanaka, Thermodynamic stability of ice II and its hydrogen- disordered counterpart; Role of zero-point energy, Journal of Physical Chemistry B, 120 (2016) 1843-1848. [Back]
  64. H. I. Okur, C. I. Drexler, E. Tyrode, P. S. Cremer and S. Roke, The Jones-Ray effect is not caused by surface active impurities, ChemRix (2018) doi: 10.26434/chemrxiv.7123181.v1. [Back]
  65. Z. Lu and O. Raz, Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse, Proceedings of the National Academy of Sciences, 114 (2017) 5083-5088. [Back]
  66. C. J. Sahle, M. A. Schroer, C. M. Jeffries and J. Niskanen, Hydration in aqueous solutions of ectoine and hydroxyectoine, Physical Chemistry Chemical Physics, (2018) Article in press, DOI: 10.1039/c8cp05308a. [Back]
  67. T. Inokuchi and N. Arai, Relationship between water permeation and flip-flop motion in a bilayer membrane, Physical Chemistry Chemical Physics, (2018) Article in press, DOI: 10.1039/c8cp04610g. [Back]
  68. Y. B. Ruiz-Blanco, Y. Almeida, C. M. Sotomayor-Torres and Y. García, Unveiled electric profiles within hydrogen bonds suggest DNA base pairs with similar bond strengths, PLoS ONE, 12 (2017) e0185638. [Back]
  69. A. Tamargo, C. Cueva, L. Laguna, M. V. Moreno-Arribas and L. A. Muñoz, Understanding the impact of chia seed mucilage on human gut microbiota by using the dynamic gastrointestinal model simgi®, Journal of Functional Foods, 50 (2018) 104-111. [Back]
  70. D. Swiatla-Wojcik and J. Szala-Bilnik, High temperature aqueous solvent effect on stretching vibrations of the
    hydroxyl radical – MD simulation study of spectral shifts and hydrogen bond statistics, The Journal of Supercritical Fluids, 143 (2019) 126-133. [Back]
  71. C. Hölzl and D. Horinek.Pressure increases the ice-like order of water at hydrophobic interfaces, Physical Chemistry Chemical Physics, 20 (2018) 21257-21261. [Back]
  72. J. Ma, F. Wang and M. Mostafavi, Ultrafast chemistry of water radical cation, H2+, in aqueous solutions, Molecules, 23 (2018) 244; F. Ambrosio and A. Pasquarello, Reactivity and energy level of a localized hole in liquid water, Physical Chemistry Chemical Physics, (2018) Article in press, DOI: 10.1039/c8cp03682a. [Back]
  73. N. Nirmalkar, A.W. Pacek and M. Barigou, Interpreting the interfacial and colloidal stability of bulk nanobubbles, Soft Matter, 14 (2018) 9643-9656. [Back]
  74. G. Clarke, R. M. Stilling, P. J. Kennedy, C. Stanton, J. F. Cryan and T. G. Dinan, Minireview: Gut microbiota: The neglected endocrine organ, Molecular Endocrinology, 28 (2014) 1221-1238; E. D. Sonnenburg, S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. Wingreen and J. L. Sonnenburg, Diet-induced extinctions in the gut microbiota compound over generations, Nature, 529 (2016) 212-215; C. L. Gentile and T. L. Weir, The gut microbiota at the intersection of diet and human health, Science, 362 (2018) 776-780. [Back]
  75. J. L. Aparicio and M. P. Elizalde, From water to H2O: Using the human dimension of science to teach the nature of science, Journal of Chemical. Education, 95 (2018) 1763-1770; H. Chang, Is Water H2O?: Evidence, Realism and Pluralism, Boston Studies in the Philosophy of Science, 293 (2012) DOI: 10.1007/978-94-007-3932-1_3,
    © Springer Science+Business Media B.V. [Back]  [Back to Top to top of page]
  76. J. M. Fox, M. Zhao, M. J. Fink, K. Kang, and G. M. Whitesides, The molecular origin of enthalpy/entropy compensation in biomolecular recognition, Annual Review of Biophysics, 47 (2018) 223-250. [Back]
  77. N. Phillips, Hunt for the sky’s ‘detergent’ begins, Nature, 563 (2018) 455-456. [Back]
  78. R. V. Linares and L. Francis, Case Study: Oasys Water—Forward Osmosis, In: Ed. S. Sarp and N.Hilal, Membrane-based salinity Gradient processes for water treatment and power generation, (2018) Elsevier, pp 335-345; doi.: 10.1016/B978-0-444-63961-5.00013-4. [Back]
  79. D. Ojha, K. Karhan and T. D. Kühne, On the hydrogen bond strength and vibrational spectroscopy of liquid water, Scientific Reports, 8 (2018) 16888. [Back]
  80. Y. Khalak, B. Baumeier and M. Karttunen, Improved general-purpose five-point model for water: TIP5P/2018, Journal of Chemical Physics, 149 (2018) 224507. [Back]
  81. L. Jiang, S.-K. Yao, K. Zhang, Z.-R. Wang, H.-W. Luo, X.-L. Zhu , Y. Gu and P. Zhang, Exotic spectra and lattice vibrations of ice X using the DFT method, Molecules, 23 (2018) 2780. [Back]
  82. S. Kim, D. Kim, J. Kim, S. An and W. Jhe, Direct evidence for curvature-dependent surface tension in capillary condensation: Kelvin equation at molecular scale, Physical Review X, 8 (2018) 041046. [Back]
  83. P. K. Verma, A. Kundu, M. S. Puretz, C. Dhoonmoon, O. S. Chegwidden, C. H. Londergan and M. Cho, The bend+libration combination band is an intrinsic, collective, and strongly solute-dependent reporter on the hydrogen bonding network of liquid water, Journal of Physical Chemistry B, 122 (2018) 2587-2599. [Back]
  84. H. Yao, H. Ke, X. Zhang, S.-Ji. Pan, M.- S. Li, L.-P. Yang, G. Schreckenbach and W. Jiang, Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding, Journal of the American Chemical Society, 140 (2018) 13466-13477. [Back]
  85. A.Bouillant, T. Mouterde, P. Bourrianne, A. Lagarde, C.Clanet and D. Quéré, Leidenfrost wheels, Nature Physics, 14 (2018) 1188-1192. [Back]
  86. E. R. Morris, Ordered conformation of xanthan in solutions and “weak gels”: Single helix, double helix or both?
    Food Hydrocolloids, 86 (2019) 18-25. [Back]
  87. A. R. Khuda-Bukhsh, Ultra-highly diluted homeopathic remedies have demonstrable anti-viral effects: A commentary on our published findingsrelated to experimental phage infectivity in bacteria, Biomedical Journal of Scientific & Technical Research, 8 (2018) doi:10.26717/ BJSTR.2018.08.001727. [Back]
  88. S. Sengupta, D. R. Moberg, F. Paesani and E. Tyrode, Neat water-vapor interface: Proton continuum and the nonresonant background, Journal of Physical Chemistry Letters, 9 (2018) 6744-6749. [Back, 2]
  89. F. Novelli, F. Sebastiani, C. Hoberg, L. R. Pestana, K. C. Bennett, N. Stavrias, L. A. F. G. Van Der Meer, G. Schwaab, T. Head-Gordon and M. Havenith, Molecular alignment of bulk water: Observing a giant THz Kerr effect
    upon librational excitation, Arxiv, (2018) 1809/1809.04261. [Back, 2]
  90. K. Zhang, P. Zhang * ID , Z.-R. Wang, X.-L. Zhu, Y.-B. Lu, C.-B. Guan and Y. Li, DFT simulations of the vibrational spectrum and hydrogen bonds ofice XIV, Molecules, 23 (2018) 1781. [Back]
  91. A. V. Nair and M. Doble, Cyclic β-(1-3) (1-6)-Glucans-production and prospective applications, Ed. P .M. Sivakumar, Recent Advances in Carbohydrate Polymer Research, (2014) 25-44. [Back]
  92. Z. Zhang and X.-Y. Liu, Control of ice nucleation: freezing and antifreeze strategies, Chemical Society Reviews, 47 (2018) 7116-7139. [Back]
  93. S. Seyedi and D. V. Matyushov, Dipolar susceptibility of protein hydration shells, Chemical Physics Letters, 713 (2018) 210-214. [Back]
  94. M. Tros, L. Zheng, J. Hunger, M. Bonn, D. Bonn, G. J. Smits and S. Woutersen, Picosecond orientational dynamics of water in living cells, Nature Communications, 8 (2017) 904. [Back]
  95. M. R. Ruggiero, S. Baroni, S. Aime and S. G. Crich, Relaxometric investigations addressing the determination of intracellular water lifetime: a novel tumour biomarker of general applicability, Molecular Physics, (2018) doi:
    10.1080/00268976.2018.1527045. [Back]
  96. M. I. Velasco, M. B. Franzoni, E. A. Franceschini, E. G. Solveyra, D. Scherlis, R. H. Acosta and G. J. A. A. Soler-Illia, Water confined in mesoporous TiO2 Aerosols: Insights from NMR experiments and molecular dynamics simulations, Journal of Physical Chemistry C, 121 (2017) 7533-7541. [Back]
  97. J. B. Mietner, F. J. Brieler, Y. J. Lee and M. Fröba, Properties of water confined in periodic mesoporous organosilicas – nanoimprinting the local structure, Angewandte Chemie International Edition. (2017) DOI: 10.1002/anie.201705707. [Back]
  98. W. H. Thompson, Perspective: Dynamics of confined liquids, Journal of Chemical Physics, 149 (2018) 170901. [Back]
  99. R. Karmakar and K. Sen, Aqueous biphasic extraction of metal ions: An alternative technology for metal regeneration, Journal of Molecular Liquids, 273 (2019) 231-247. [Back]
  100. C. G. Salzmann, Advances in the experimental exploration of water’s phase diagram, (2018) arXiv:1812.04333 [cond-mat.mtrl-sci]; Journal of Chemical Physics, 150 (2019) 060901. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2018 and last updated by Martin Chaplin on 6 December, 2021


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License