Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 4001- 4100

 

  1. I. Frank, S. Genuit, F. Matz and H. Oschinski, Ammonia, water, and hydrogen: Can nuclear motion be described classically? International Journal of Quantum Chemistry, 120 (2020) e26142. [Back]
  2. A. Ünal and U. Bozkaya, Ionized water clusters (H2O)n+, n = 2 to 6: A high-accuracy study of structures and energetics, International Journal of Quantum Chemistry, (2019) e26100. [Back]
  3. M. EL Guendouzi, J. Faridi and L.Khamar, Chemical speciation of aqueous hydrogen fluoride at various temperatures from 298.15 K to 353.15 K, Fluid Phase Equilibria, 499 (2019) 112244. [Back]
  4. C. Voigt, J. Schreiner, A. Kohlmann, P. Zink, K. Mauersberger, N. Larsen, T. Deshler, C, Kröger, J, Rosen, A. Adriani, F. Cairo, G, Di Donfrancesco, M. Viterbini, J. Ovarlez, H. Ovarlez, C. David and A. Dörnbrack, Nitric acid trihydrate (NAT) in polar stratospheric clouds, Science, 290 (2000) 1756-1758. [Back]
  5. M. Kohns, G. Lazarou, S. Kournopoulos, E. Forte, F. A. Perdomo, G. Jackson, C. S. Adjiman and
    A. Galindo, Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulphuric, and carbonic acids, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp06795g. [Back, 2, 3]
  6. Q. Dong, X. Guo, L. Li1, C. Yu, L. Nie, W.Tian, H. Zhang, S. Huang and H. Zang, Understanding hyaluronic acid induced variation of water structure by near-infrared spectroscopy, Scientific Reports, 10 (2020) 1387. [Back]
  7. A. S. Nair , S. Kumar , S. Acharya and B. Bagchi, Rotation of small diatomics in water-ethanol mixture: Multiple breakdowns of hydrodynamic predictions, Journal of Chemical Physics, 153 (2020) 014504. [Back]
  8. R. V. Usoltseva, A. A. Belik, M. I. Kusaykin, O. S. Malyarenko, T. N. Zvyagintsevа and S. P. Ermakova, Laminarans and 1,3-β-D-glucanases, International Journal of Biological Macromolecules, (2020) Article in press, DOI: 10.1016/j.ijbiomac.2020.07.034. [Back]
  9. M. Kumar, T.Trabelsi, J. C. G. Martin, A. Saiz-Lopez, and J. S. Francisco, HIOx-IONO2 Dynamics at the air-water interface: revealing the existence of a halogen bond at the atmospheric aerosol surface, Journal of the American Chemical Society, (2020) Article in press, DOI: 10.1021/jacs.0c05232. [Back]
  10. P. G. Debenedetti, F. Sciortino and G.H. Zerze, Second critical point in two realistic models of water, Science, 369 (2020) 289-292; Princeton University. "Evidence for decades-old theory to explain the odd behaviors of water: Study detects the critical point between 2 liquid forms of water." ScienceDaily, 16 July 2020. [Back]
  11. P. Llombart, E. G. Noya and L. G. MacDowell, Surface phase transitions and crystal habits of ice in the atmosphere, Science Advances, 6 (2020) eaay9322. [Back]
  12. P. N. Pusey, Brownian motion goes ballistic, Science, 332 (2011) 802-803. [Back]
  13. M. Tafipolsky and K. Ansorg, Toward a physically-motivated force field: Hydrogen bond directionality from a symmetry-adapted perturbation theory perspective, Journal of Chemical Theory and Computation,  12 (2016) 1267-1279; M.Tafipolsky, Challenging dogmas: Hydrogen bond revisited, Journal of Physical Chemistry A , 120 (2016) 4550-4559. [Back]
  14. J. Jin, R. Wang, J. Tang, L. Yang, Z. Feng, C. Xu, F. Yang and N. Gu, Dynamic tracking of bulk nanobubbles from microbubbles shrinkage to collapse, Colloids and Surfaces A, 589 (2020) 124430. [Back]
  15. B. H. Tan, H. An and C.-D. Ohl, How bulk nanobubbles might survive, Physical Review Letters, 124 (2020) 134503. [Back]
  16. A. K. Soper, Disordered atom molecular potential for water parameterized against neutron diffraction data. Application to the structure of ice Ih, Journal of Physical Chemistry B119 (2015) 9244-9253. [Back]
  17. H. Zhang, W. Cao, Q. Yuan, L.Wang, X. Zhou, S. Liu and X.-B. Wang, Spectroscopic evidence for intact carbonic acid stabilized by halide anions in the gas phase,, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp02338h. [Back]
  18. G. Graziano, Why small proteins tend to have high denaturation temperatures, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp01910k. [Back]
  19. E. Stellwagen and H. Wilgus, Relationship of protein thermostability to accessible surface area, Nature, 275 (1978) 342-343. [Back]
  20. Y.Nakashima, Y. Ito, K.Okutsu, M. Nakano and F. Misaizu, Photodissociation processes of a water–oxygen complex cation studied by an ion imaging technique, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp03132a. [Back]
  21. G. Lanza and M. A. Chiacchio, The water molecule arrangement over the side chain of some aliphatic amino acids: A quantum chemical and bottom-up investigation, International Journal of Quantum Chemistry, (2020) e26161. DOI: 10.1002/qua.26161. [Back, 2]
  22. Y. Li, C. Diddens , T. Segers , H. Wijshoff, M. Versluis and D. Lohse, Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2006153117. [Back]
  23. I. A. Klein, A. Boija, L. K. Afeyan, S. W. Hawken, M. Fan, A. D. Agnese, O. Oksuz, J. E. Henninger, K. Shrinivas, B. R. Sabari, I. Sagi, V. E. Clark, J. M. Platt, M. Kar, P. M. McCall, A. V. Zamudio, J. C. Manteiga, E. L. Coffey, C. H. Li, N. M. Hannett, Y. E. Guo, T.-M. Decker, T. I. Lee, T. Zhang, J.-K. Weng, D. J. Taatjes, A. Chakraborty, P. A. Sharp Y.T. Chang, A. A. Hyman, N.S. Gray and R. A. Young, Partitioning of cancer therapeutics in nuclear condensates, Science, 368 (2020) 1386-1392; P. Strzyz, Drugs enter a liquid phase, Nature Reviews Molecular Cell Biology, (2020) DOI: 10.1038/s41580-020-0268-2. [Back]
  24. G. Ferraro, A. J. Jadhav and M. Barigou, A Henry’s law method for generating bulk nanobubbles, Nanoscale, (2020) Article in press, DOI: 10.1039/d0nr03332d. [Back]
  25. E. Sezgin, I. Levental, S. Mayor and C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nature Reviews Molecular Cell Biology, 18 (2017) 361-374; I. Levental, Lipid rafts come of age, Nature Reviews Molecular Cell Biology, (2020) DOI: 10.1038/s41580-020-0252-x. [Back]  [Back to Top to top of page]
  26. K. Schmidt-Rohr, Analysis of two definitions of the Mole that are in simultaneous use, and their surprising consequences, Journal of Chemical Education, 97 (2020) 597-602. [Back]
  27. X. Liu, C. Liu and C. Meng, Oligomerization of silicic acids in neutral aqueous solution: A first-principles investigation, International Journal of Molecular Sciences, 20 (2019) 3037. [Back]
  28. P. Schienbein and D. Marx, Supercritical water is not hydrogen bonded, Angewandte Chemie International Edition, 59 (2020) 18578-18585; P. Ball, Simulation says supercritical water has no hydrogen bonds, Chemistry World, 17(10) (2020) 48. [Back]
  29. R. Hao, Y. Fan, T. J. Anderson and B. Zhang, Imaging single nanobubbles of H2 and O2 during the overall water
    electrolysis with single-molecule fluorescence microscopy, Analytical Chemistry, 92 (2020) 3682-3688. [Back]
  30. (a) G. S. Manning, On the thermodynamic stability of bubbles, immiscible droplets, and cavities, Physical Chemistry Chemical Physics, 22 (2020) 17523; (b) L. Makkonen and T. Vehmash, Comment on ‘‘On the thermodynamic stability of bubbles, immiscible droplets, and cavities’’ by G. S. Manning, Phys. Chem. Chem. Phys., 2020, 22, 17523, Physical Chemistry Chemical Physics, (2021) DOI: 10.1039/d1cp01122g. [Back]
  31. Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao and G. Yu, Hydrogels and hydrogel-derived materials for energy and water sustainability, Chemical Reviews, (2020) Article in press, DOI: 10.1021/acs.chemrev.0c00345. [Back]
  32. S. Huang, F. Wan, S. Bi, J. Zhu, Z. Niu, J. A. Chen, Self-healing integrated all-in-one zinc-ion battery. Angewandte Chemie International Edition, 58 (2019) 4313-4317; L. M. Fuhrer, S. Sun, V. Boyko, M.Kellermeier and H. Cölfen, Tuning the properties of hydrogels made from poly(acrylic acid) and calcium salts, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp02649b. [Back]
  33. J. Biswal, P. Jayaprakash, R. Rangaswamy and J. Jeyakanthan, Synergistic effects of hydration sites in protein stability: A theoretical water thermodynamics approach, in, D. B. Singh, T. Tripathi (eds.), Frontiers in Protein Structure, Function, and Dynamics, Springer Nature Singapore Pte Ltd. (2020) DOI: 10.1007/978-981-15-5530-5_8. [Back]
  34. W. Makulski, Deuterium isotope effects on 17O nuclear shielding in a single water molecule from NMR gas phase measurements, Physical Chemistry Chemical Physics, 22 (2020) Article in press, DOI: 10.1039/d0cp03085f. [Back]
  35. A. A. Kananenka and J. L. Skinner, Unusually strong hydrogen bond cooperativity in particular (H2O)20 clusters, Physical Chemistry Chemical Physics, 22 (2020) 18124-18131; A. Whiteside, Hydrogen bonds join forces to maximise water-water interaction, Chemistry World, 17(10) (2020) 49. [Back, 2]
  36. K. Shiraga, M. Urabe, T. Matsui, S. Kikuchi and Y. Ogawa, Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp02265a. [Back]
  37. E. A. Engel, A. Anelli, M.Ceriotti, C. J. Pickard and R. J. Needs, Mapping uncharted territory in ice from zeolite networks to ice structures Nature Communications, 9 (2018) 2173. [Back]
  38. N. G. Stenina, Water-related defects in quartz, Bulletin of Geosciences, 79 (2004) 251-268. [Back]
  39. A. Gerzhova, and M. Aider, Alkalinity of electro-activated aqueous solutions, Russian Journal of Electrochemistry, 56 (2020) 243-253; originally in Russian in Elektrokhimiya, 56 (2020) 261-272. [Back]
  40. B. Monserrat, J. G. Brandenburg, E. A. Engel and B. Cheng, Extracting ice phases from liquid water: why a machine-learning water model generalizes so well, arXiv:2006.13316v1 [physics.comp-ph] (2020). [Back]
  41. Q. A. Besford, A. J. Christofferson, J. Kalayan, J.-U. Sommer and R. H. Henchman, The attraction of water for itself at hydrophobic quartz interfaces, Journal of Physical Chemistry B, (2020) Article in press, DOI: 10.1021/acs.jpcb.0c04545. [Back]
  42. C. D. S. Brites, B. Zhuang, M. L. Debasu, D. Ding, X. Qin, F. E Maturi, W.W. Y. Lim, D. W. Soh, J. Rocha, Z. Yi, Xi. Liu and L. D. Carlos, Decoding a percolation phase transition of water at ~330 K with a nanoparticle ruler, Journal of Physical Chemistry Letters, (2020) Article in press, DOI: 10.1021/acs.jpclett.0c02147. [Back]
  43. C. Yu, H. Guo, K. Cui,1, X. Li, Y. N. Ye, T. Kurokawa and J. P. Gong, Hydrogels as dynamic memory with forgetting ability, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2006842117. [Back]
  44. J. Lin, N. Li, S. Yang, M. Jia, J.Liu, X.-M. Li, L. An, Q.Tian, L.-Z. Dong and Y.-Q. Lan, Self-assembly of giant Mo240 hollow opening dodecahedra, Journal of the American Chemical Society, (2020) Article in press, doi 10.1021/jacs.0c06582. [Back]
  45. H. Zhao, Y. Tan, L. Zhang, R. Zhang, M. Shalaby, C. Zhang, Y. Zhao and X.-C. Zhang, Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence, Light: Science & Applications, 9 (2020) 136. [Back]
  46. C. Zhu, Y. Gao, W. Zhu, Y. Liu, J. S. Francisco and X. C. Zeng, Computational prediction of novel ice phases: A perspective, Journal of Physical Chemistry Letters, (2020) Article in press, DOI: 10.1021/acs.jpclett.0c01635. [Back]
  47. M. Azadi, A. V. Nguyen and G. E. Yakubov, The effect of dissolved gases on the short-range attractive force between hydrophobic surfaces in the absence of nanobubble bridging, Langmuir, (2020) Article in press, DOI: 10.1021/acs.langmuir.0c00117. [Back]
  48. A. Asadova, E. A. Masimov, A. R. Imamaliyev and A. H. Asadova, Spectrophotometric investigation of gel formation in water solution of agar, Modern Physics Letters B, (2020) 2050147; DOI: 10.1142/S021798492050147X. [Back]
  49. L. J. Mauer, Water–solid interactions in food ingredients and systems, in, Water Activity in Foods: Fundamentals and Applications, 2nd ed. Eds. G. V. Barbosa-Cánovas, A. J. Fontana, Jr., S. J. Schmidt and T. P. Labuza. John Wiley & Sons, Inc. ch 6 (2020) pp 123-159. [Back]
  50. P. Chen and H. Peng, High-performance graphene fibers enabled by hydration, ACS Central Science,  6 (2020) 1040-1042; DOI: 10.1021/acscentsci.0c00820. [Back]  [Back to Top to top of page]
  51. A. Nilsson and F. Perakis, X-Ray studies of water, in, E. J. Jaeschke et al. (eds.), Synchrotron Light Sources and Free-Electron Lasers, Springer Nature Switzerland AG 2020; https://doi.org/10.1007/978-3-030-23201-6_69, pp 1935-1988. [Back]
  52. N. Ansari, B. Onat, G. C. Sosso and A. Hassanali, Insights into the emerging networks of voids in simulated supercooled water, Journal of Physical Chemistry B, 124 (2020) 2180-2190. [Back]
  53. T. O. Farmer, A. J. Markvardsen, T. H. Rod, H. N. Bordallo and J. Swenson, Dynamical accuracy of water models on supercooling, Journal of Physical Chemistry Letters,(2020) Article in press, DOI: 10.1021/acs.jpclett.0c02158. [Back]
  54. K. H. Kim, A. Späh, H. Pathak, C. Yang, S. Bonetti , K. Amann-Winkel, D. Mariedahl, D. Schlesinger, J. A. Sellberg, D. Mendez, G. van der Schot , H. Y. Hwang, J. Clark, O. Shigeki, T. Tadashi, Y. Harada, H. Ogasawara, T. Katayama,
    A. Nilsson and F. Perakis, Anisotropic X-ray scattering of transiently oriented water, Physical Review Letters, 125 (2020) 076002. [Back]
  55. J. P. Hoare, Oxygen, in, Standard Potentials in Aqueous Solution Ed, A. J. Bard, R. Parsons and J. Jordan, International, Union of Pure and Applied Chemistry, (1985) ISBN: 0-8247-7291-1. [Back]
  56. R. Song, D. Chen, C. Suo and Z. Guo, Ab initio investigation of the first hydration shell of glucose, Carbohydrate Research, 496 (2020) 108114. [Back]
  57. V. B. Prakapenka, N. Holtgrewe, S. S. Lobanov and A. Goncharov, Polymorphism of superionic ice, Arxiv (2020)
    arxiv.org/ftp/arxiv/papers/2007/2007.07715.pdf. [Back]
  58. J. de Poorter, An improved interstitial-ice model for pure liquid water, Arxiv (2020) arXiv:1907.12479v2 [cond-mat.mtrl-sci] 5 Feb 2020. [Back]
  59. J. A. Morales-Vidales, S. A. S. Salazar, J. M. Jacobo-Fernández and A. Tlahuice-Flores, Platonic solids and their programming: A geometrical approach, Journal of Chemical Education, (2020) Article in press, DOI: 10.1021/acs.jchemed.9b00751. [Back]
  60. Z. A. Piskulich , D. Laage ,# and W.H. Thompson, Activation energies and the extended jump model: How temperature affects reorientation and hydrogen-bond exchange dynamics in water, Journal of Chemcal Physics , 153 (2020) 074110. [Back]
  61. L. Piani, Y.Marrocchi, T. Rigaudier, L. G. Vacher, D. Thomassin and B. Marty, Earth’s water may have been inherited from material similar to enstatite chondrite meteorites, Science, 369 (2020) 1110-1113.; A. H. Peslier, The origins of water, Science, 369 (2020) 1058. [Back]
  62. A. Schumpe, The estimation of gas solubilities in salt solutions, Chemlcal Engineering Science, 48 (1993) 153-158; C. Hermann, The estimation of gas solubilities in salt solutions, Chemlcal Engineering Science, 50 (1995) 1673-1675. [Back]
  63. H. Kanno, R. J. Speedy and C. A. Angell, Supercooling of water to -92 °C under pressure, Science, 189 (1975) 880-881. [Back]
  64. K. I. Assaf and W. M. Nau, The chaotropic effect as an assembly motif in chemistry, Angewandte Chemie International Edition, 57 (2018) 2-16; T. Buchecker, P. Schmid, S. Renaudineau, A. Proust, O. Diat, A. Pfitzner and P. Bauduin, Polyoxometalates in the Hofmeister series, Chemical Communication, 54 (2018) 1833-1836. [Back , 2]
  65. G. I. Olgenblum, L. Sapir and D. Harries, Properties of aqueous trehalose mixtures: Glass transition and
    hydrogen bonding, Journal of Chemical Theory and Computation,  16 (2020) 1249-1262. [Back]
  66. M. Śmiechowski and I. Persson, Hydration of oxometallate ions in aqueous solution, Inorganic Chemistry, 59 (2020) 8231-8239. [Back]
  67. N. V Quach, A. Li and J. Earthman, Interaction of calcium carbonate with nanobubbles produced in an alternating magnetic field, ACS Applied Materials & Interfaces, (2020) Article in press, DOI: 10.1021/acsami.0c12060. [Back , 2]
  68. S. Chakraborty, M. Doktorova, T. R. Molugu, F. A. Heberle, H. L. Scott, B. Dzikovski, M. Nagao, L.-R. Stingaciu, R. F. Standaert, F. N. Barrera, J. Katsaras, G. Khelashvili, M.F. Brown and R. Ashkar, How cholesterol stiffens unsaturated lipid membranes, Proceedings of the National Academy of Sciences, 117 (2020) 21896-21905. [Back]
  69. P. D’Odorico, D. D. Chiarelli, L. Rosa, A. Binia D. Zilberman and M. C. Rulli, The global value of water in agriculture
    Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2005835117. [Back]
  70. F. Ebrahimi, G. R. Maktabdaran and M.Sahimi, Formation of stable water bridge between two disjoint nanotubes with single-file chains of water, Journal of Physical Chemistry B, (2020) Article in press, DOI: 10.1021/acs.jpcb.0c05331. [Back]
  71. T. Giovannini, F. Egidi and C. Cappelli, Molecular spectroscopy of aqueous solutions: a theoretical perspective, Chemical Society Reviews, 49 (2020) 5664-5677. [Back]
  72. R. Yang, J. Guan, S. Sun, S. S. Sablani and J. Tang, Understanding water activity change in oil with temperature, Current Research in Food Science, 3 (2020) 158-165. [Back]
  73. C. I. Lynch, S. Rao and M. S. P. Sansom, Water in nanopores and biological channels: A molecular simulation perspective, Chemical Reviews, (2020) Article in press, DOI: 10.1021/acs.chemrev.9b00830. [Back]
  74. K.-I. Oh and C. R. Baiz, Molecular heterogeneity in aqueous cosolvent systems, Journal of Chemcal Physics , 152 (2020) 190901. [Back]
  75. N. Kawakami, K. Iwata, A. Shiotari and Y. Sugimoto, Intrinsic reconstruction of ice-I surfaces, Science Advances. 6 (2020) eabb7986. [Back]  [Back to Top to top of page]
  76. L. Kringle, W. A. Thornley, B. D. Kay and G. A. Kimmel, Reversible structural transformations in supercooled liquid water from 135 to 245 K, Science, 369 (2020) 1490-1492; E. Conover, A stop-motion experiment reveals supercooled water’s dual nature, Science news, September 28, 2020; L. Kringle, W. A. Thornley, B. D. Kay and G. A. Kimmel, Isotope effects on the structural transformation and relaxation of deeply supercooled water, The Journal of Chemical Physics, 156 (2022) 084501. [Back, 2, 3]
  77. P. Sudera, J. D Cyran, M. Deiseroth, E. H. G. Backus and M. Bonn, Interfacial vibrational dynamics of Ice Ih and liquid water, Journal of the American Chemical Society, (2020) Article in press, DOI: 10.1021/jacs.0c04526. [Back]
  78. D. M. Leitner, C. Hyeon and K. M. Reid, Water-mediated biomolecular dynamics and allostery, Journal of Chemcal Physics , 152 (2020) 240901. [Back]
  79. C. López-Bueno, M. Suárez-Rodríguez, A. Amigo and F. Rivadulla, Hydrophobic solvation increases thermal conductivity of water, Physical Chemistry Chemical Physics, (2020) Article in press, doi:
    10.1039/D0CP03778H. [Back]
  80. O. O. Sofronov and H. J. Bakker, Nature of hydrated proton vibrations revealed by nonlinear spectroscopy of acid water nanodroplets, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp03137b. [Back]
  81. Y. Xu, X. Xuan, Z. Zhang and W. Guo, A folded ice monolayer, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/D0CP03112G. [Back]
  82. J. Xu, Z. Sun, C. Zhang, M. DelloStritto, M. L. Klein, D. Lu and X. Wu, Importance of nuclear quantum effects on the hydration of chloride ion, arXiv:2009.07304v1 [physics.chem-ph] 15 Sep 2020. [Back]
  83. J. Guo, L. Zhou, A. Zen, A. Michaelides, X. Wu, E. Wang, L. Xu and J. Chen, Hydration of NH4+ in water: Bifurcated hydrogen bonding structures and fast rotational dynamics, Physical Review Letters, 125 (2020) 106001. [Back]
  84. T. C. Nicholas, A. L. Goodwin and V. L. Deringe, Understanding the geometric diversity of inorganic and hybrid frameworks through structural coarse-graining, arxiv.org/ftp/arxiv/papers/2005/2005.09939.pdf. [Back]
  85. M. de Koning, Crystal imperfections in ice Ih, Journal of Chemcal Physics , 153 (2020) 110902. [Back]
  86. A. Wołos, R. Roszak, A. Żądło-Dobrowolska, W. Beker, B. Mikulak-Klucznik, G. Spólnik, M. Dygas, S. Szymkuć and B. A. Grzybowski., Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry, Science, 369 (2020) 1584; A. Wołos, R. Roszak, A. Żądło-Dobrowolska, W. Beker, B. Mikulak-Klucznik, G. Spólnik, M. Dygas, S. Szymkuć and B. A. Grzybowski., Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry, Science, 369 (2020) eaaw1955. [Back]
  87. L. Li, J. Zhong, Y. Yan, J. Zhang, J. Xu, J. S. Francisco and X. C. Zeng, Unraveling nucleation pathway in methane clathrate formation, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2011755117. [Back]
  88. S. O. Hashim, Starch-modifying enzymes, Advances in Biochemical Engineering / Biotechnology, 172 (2020) 221-244. DOI: 10.1007/10_2019_91. [Back]
  89. W. Bonani, N. Cagol, and D. Maniglio, Alginate hydrogels: A tool for 3D cell encapsulation, tissue engineering, and biofabrication, in H. J. Chun et al. (eds.), Biomimicked Biomaterials, Advances in Experimental Medicine and Biology, Springer Nature Singapore Pte Ltd. 1250 (2020) pp 49-62, https://doi.org/10.1007/978-981-15-3262-7_4. [Back]
  90. I. R. Ariyarathna and E. Miliordos, Geometric and electronic structure analysis of calcium water complexes with one and two solvation shells, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp04309e. [Back]
  91. A. A. Pomeransky, Clathrate III (bromine hydrate): Structural relationship with clathrate I, ChemPhysChem, (2020) Article in press, DOI: 10.1002/cphc.202000195. [Back]
  92. Y. Lia and Z.-F. Liu, Solvated proton and the origin of the high onset overpotential in the oxygen reduction reaction on Pt(111), Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp04211k. [Back]
  93. K. Saito, M. Mandal and H. Ishikita, Redox potentials along the redox-active low barrier H-bonds in electron transfer pathways, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp04265j. [Back]
  94. T. E. Gartner III, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Signatures of a liquid–liquid transition in an ab initio deep neural network model for water, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2015440117. [Back, 2, 3]
  95. H. Shi, L.-D. Gong, C. Liu, L.-N. Lu, and Z.-Z.Yang, ABEEM/MM OH Models for OH(H2O)n clusters and aqueous OH: structures, charge distributions, and binding energies, Journal of Physical Chemistry, A, 124 (2020) 5963-5978. [Back]
  96. J. Chwastowski, K. Ciesielska, W. Ciesielski, K. Khachatryan, H.Kołoczek, D. Kulawik, Z. Oszczęda, P. Tomasik and
    M. Witczak, Structure and physicochemical properties of water treated under nitrogen with low-temperature glow plasma, Water, 12 (2020) 1314; doi:10.3390/w12051314. [Back]
  97. C. Thirstrup, A. Snedden and L. C. Deleebeeck, Addressing the challenges of traceable electrolytic conductivity measurements in water, Measurement Science and Technology, 28 (2017) 124001. [Back]
  98. V. G. Artemov, E. Uykur, P. O. Kapralov, A. Kiselev, K. Stevenson, H. Ouerdane and M. Dressel, Anomalously hgh proton conduction of interfacial water, Journal of Physical Chemistry Letters, 11 (2020) 3623-3628. [Back]
  99. R. Yuan, J. A. Napoli, C. Yan, O. Marsalek, T. E. Markland and M. D. Fayer,Tracking aqueous proton transfer by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations, ACS Central Science, 5 (2019) 1269-1277. [Back]
  100. A. A. Zavitsas, Ideal thermodynamic behaviors of aqueous electrolyte solutions at very high concentrations, Chemical Physics Letters, 759 (2020) 137941; J. G. Reynolds, The (almost) ideal thermodynamics of aqueous rubidium nitrite solutions from 0.3 to 62.3 molal, Chemical Physics Letters, 749 (2020) 137439. [Back, 2, 3, 4, 5] [Back to Top to top of page]




 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2020 and last updated by Martin Chaplin on 2 September, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License