Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 4401- 4500

 

  1. F. Leoni, C. Calero, and G. Franzese, Nanoconfined fluids: Uniqueness of water compared to other liquids, ACS Nano, 15 (2021) 19864-19876. [Back]
  2. H. Tanaka, Roles of liquid structural ordering in glass transition, crystallization, and water’s anomalies. Journal of Non-Crystalline Solids: X, 13 (2022) 100076. [Back, 2]
  3. F. C. Frank, Supercooling of liquids, Proceedings of the Royal Society, London, A, 215 (1952) 43-46. [Back]
  4. G. Gonella, E. H. G. Backus, Y.Nagata, D. J. Bonthuis, P. Loche, A. Schlaich, R. R. Netz, A. Kühnle, I. T. McCrum , M. T. M. Koper, M. Wolf, B. Winter, G. Meijer, R. K. Campen and M. Bonn, Water at charged interfaces, Nature Reviews, Chemistry, 5 (2021) 467-485. [Back]
  5. P. D. Mitev, W. J. Briels and K. Hermansson, Space-resolved OH vibrational spectra of the hydration shell around CO2, Journal of Physical Chemistry B, 125 (2021) 13886-13895. [Back]
  6. A. Rognoni, R. Conte and M. Ceotto, How many water molecules are needed to solvate one? Chemical Scence, 12 (2021) 2060-2064. [Back]
  7. Y. Zhai, P. Luo, J. Waller, L. Self, L. W. Harriger, Y. Z and A. Faraone, Dynamics of molecular associates in methanol/water mixtures, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp04726d. [Back]
  8. Q. Sun, The Raman OH stretching bands of liquid water, Vibrational Spectroscopy, 51 (2009) 213-217. [Back]
  9. C. Steinbach, P. Andersson, J. K. Kazimirski, U. Buck, V. Buch and T. A. Beu, Infrared predissociation spectroscopy of large water clusters: A unique probe of cluster surfaces, Journal of Physical Chemistry A, 108 (2004) 6165-6174. [Back]
  10. G. E. Walrafen, Raman spectral studies of HDO in H2O, The Journal of Chemical Physics, 48 (1968) 244-251. [Back
  11. W.  R. Busing and D. F. Hornig, The effect of dissolved KBr, KOH, or HCl on the Raman spectrum of water, The Journal of Physical Chemistry, 65 (1961) 284-292. [Back
  12. P.C. Cross, J. Burnham and P.A. Leighton, The Raman spectrum and the structure of water, Journal of the American Chemical Society, 59  (1937) 1134-1147. [Back]
  13. G. E. Walrafen, Raman spectral studies of water structure, Journal of Physical Chemistry, 40 (1964) 3249-3256. [Back]
  14. R. J. Meier, On art and science in curve-fitting vibrational spectra, Vibrational Spectroscopy, 39 (2005) 266-269. [Back]
  15. S. Carlson, F. N. Brünig, P. Loche, D. J. Bonthuis and R. R. Netz, Exploring the absorption spectrum of simulated water from MHz to the infrared, Journal of Physical Chemistry, A124 (2020) 5599-5605, arXiv:2003.07260v1 [physics.chem-ph]. [Back]
  16. D. Kojic, R. Tsenkova and M. Yasui, Self-subtraction improves consistency in spectral curve fitting, Journal of Quantitative Spectroscopy & Radiative Transfer, 277 (2022) 107991. [Back]
  17. P. Laurson, P.Raudsepp, H.Kaldmäe, A. Kikas and U. Mäeorg, Gaussians for detection of small changes in plant–water clusters, AIP Advances, 10 (2020) 085214. [Back]
  18. Y. Suzuki, Direct observation of reversible liquid–liquid transition in atrehalose aqueous solution,Proceedings of the National Academy of Sciences, 119 (2021) e2113411119; P. Ball, Direct evidence emerges for the existence of two forms of liquid water, Chemistry World, 19, March (2022) 34-35. [Back, 2, 3]
  19. M. Edalatpour, D. T. Cusumano, S. Nath and J. B. Boreyko, Three-phase Leidenfrost effect, Physical Review Fluids, 7 (2022) 014004; Virginia Tech, Using ice to boil water: Researcher makes heat transfer discovery that expands on 18th century principle (2022, January 21) retrieved 26 January. [Back]
  20. F. Pacheco-Vázquez, R. Ledesma-Alonso, J. L. Palacio-Rangel and F. Moreau, Triple Leidenfrost effect: Preventing coalescence of drops on a hot plate, Physical Review Letters, 127 (2021) 204501; D. Appell, Levitating and colliding liquid drops, (2022, January 14) retrieved 26 January. [Back]
  21. P. G. Brewer, E. T. Peltzer and P. M. Walz, How much H2O is there in the ocean? The structure of water in sea
    water, Journal of Geophysical Research:Oceans, 124 (2019) 212-226. [Back]
  22. M. Demmenie, P. Kolpakov, Y. Nagata, S. Woutersen and D. Bonn, Self-healing behavior of ice,
    arXiv:2111.08367v1 [physics.chem-ph] 16 Nov 2021. [Back]
  23. T. Bui, H. Frampton, S. Huang, I. R. Collins, A. Striolo and A. Michaelides, Water/oil interfacial tension reduction – an interfacial entropy driven process, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp03971g. [Back]
  24. A. E. Gleason, D. R. Rittman, C. A. Bolme, E. Galtier, H. J. Lee, E. Granados, S. Ali, A. Lazicki, D. Swift, P. Celliers, B. Militzer, S. Stanley and W. L. Mao, Dynamic compression of water to conditions in ice giant interiors, Scientific Reports, 12 (2022) 715. [Back]
  25. J. D. Bernardi and i. Mudawar, The Leidenfrost point: Experimental study and assessment of existingmodels, Journal of Heat Transfer, 121 (1999) 894-903. [Back]  [Back to Top to top of page]
  26. A.-L. Biance, C. Clanet and D. Quéré, Leidenfrost drops, Physics of Fluids, 15 (2003) 1632-1637. [Back]
  27. A. Gauthier, C. Diddens, R. Proville, D. Lohse and D. van der Meer, Self-propulsion of inverse Leidenfrost drops on a cryogenic bath, ,Proceedings of the National Academy of Sciences, 116 (2019) 1174-1179; M. Adda-Bedia, S. Kumar, F. Lechenault, S. Moulinet, M. Schillaci and D. Vella, Inverse Leidenfrost effect: Levitating drops on liquid nitrogen, Langmuir,  32 (2016) 4179-4188. [Back]
  28. S. Lyu, V. Mathai, Y. Wang, B. Sobac, P. Colinet, D. Lohse and C. Sun, Final fate of a Leidenfrost droplet: Explosion or takeoff, Science Adances, 5 (2019) eaav8081. [Back]
  29. I. Ohmine and S. Saito, Dynamical behavior of water; Fluctuation, reactions and phase transitions, Bulletin of the Chemical Society of Japan, 94 (2021) 2575-2601. [Back]
  30. T. Castelo-Grande, P. A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, Magnetic water treatment in a wastewater treatment plant: Part I - sorption and magnetic particles, Journal of Environmental Management, 281 (2021) 111872; T. Castelo-Grande, P. A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, Magnetic water treatment in a wastewater treatment plant: Part II - Processing waters and kinetic study, Journal of Environmental Management, 285 (2021) 112177. [Back]
  31. A. Rosu-Finsen and C. G. Salzmann, Is pressure the key to hydrogen ordering ice IV? Chemical Physics Letters, 789 (2022) 139325. [Back]
  32. Z. Sharif and C. G. Salzmann, Comparison of the phase transitions of high-pressure phases of ammonium fluoride and ice at ambient pressure, The Journal of Chemical Physics, 156 (2022) 014502. [Back]
  33. F. Hirata, Does the second critical-point of water really exist in nature? (2022) arXiv:2201.08556 [cond-mat.stat-mech]. [Back]
  34. X. Sui, H. Guo, C. Cai, Q. Li, C. Wen, X. Zhang, X. Wang, J. Yang and L. Zhang, Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities, Chemical Engineering Journal, 419 (2021) 129478. [Back]
  35. H. Fukui, H. Kadobayashi, H. Abe, R. Takahashi, H.Wadati and N. Hira, Equation of states for dense ice up to 80 GPa at low-temperature conditions,The Journal of Chemical Physics, 156 (2022) 064504. [Back]
  36. I. M. Zeron, M. A. Gonzalez, E. Errani, C. Vega and J. L. F. Abascal, “In Silico” Seawater, Journal of Chemical Theory and Compututation, 17 (2021) 1715-1725. [Back]
  37. M. A. Khan, T. Al-Attas, S. Roy, M. M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P. M. Ajayan and M. G. Kibria, Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science, 14 (2021) 4831-4839. [Back]
  38. J. N. Hausmann, R, Schlögl, P, W. Menezes and M, Driess, Is direct seawater splitting economically meaningful? Energy & Environmental Science, 14 (2021) 3679-3685. [Back]
  39. M. Bin, R. Yousif, S. Berkowicz, S. Das, D. Schlesinger and F. Perakis, Wide-angle X-ray scattering and molecular dynamics simulations of supercooled protein hydration water, Physical Chemistry Chemical Physics, 23 (2021) 18308-18313. [Back]
  40. A. D. Stephens, J. Kölbel, R. Moons, M. T. Ruggerio, N. Mahmoudi, T. A. Shmool, T. M. McCoy, D. Nietlispach, A. F. Routh, F. Sobott, J. A.3 Zeitler and G. S. K. Schierle, The role of water mobility in protein misfolding, bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425575. [Back]
  41. H. Guo, P. Mei, J. Xiao, X.Huang, A. Ishag and Y. Sun, Carbon materials for extraction of uranium from seawater, Chemosphere, 278 (2021) 130411. [Back]
  42. N. Silva,1, L. A. Ferreira, A. I. Belgovskiy, P. P. Madeira, J. A. Teixeira, E. K. Mann, J. A.Mann Jr., W. V. Meyer, A. E. Smart, V. Y. Chernyak, V. N. Uverski and B. Y. Zaslavsky, Effects of different solutes on the physical chemical properties of aqueous solutions via rearrangement of hydrogen bonds in water, Journal of Molecular Liquids, 335 (2021) 116288. [Back]
  43. S. Zhou, S. Nazari, A. Hassanzadeh, X. Bu, C. Ni, Y.Peng, G. Xie and Y. He, The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation, Ultrasonics Sonochemistry, 84 (2022) 105965. [Back]
  44. Y. Nozaki, A fresh look at element distribution in the North Pacific, EOS, American Geophysical Union, 78 (1997) 221. [Back]
  45. B. A. Sharkh, A. A. Al-Amoudi, M. Farooque, C. M. Fellows, S. Ihm, S. Lee, S. Li and N. Voutchkov, Seawater desalination concentrate—a new frontier for sustainable mining of valuable minerals, npj Clean Water, (2022) 9. [Back]
  46. A. E. G. Mikkelsen, H. H. Kristoffersen, J. Schiøtz, T. Vegge, H. A. Hansen and K. W. Jacobsen, Structure and energetics of liquid water–hydroxyl layers on Pt(111), Physical Chemistry Chemical Physics, (2022) Article in press, DOI: 10.1039/d2cp00190j. [Back]
  47. A. V. Thoeny, I. S. Parrichini, T. M. Gasser and T. Loerting, Raman spectroscopy study of the slow order-order transformation of deuterium atoms: Ice XIX decay and ice XV formation, The Journal of Chemical Physics, 156 (2022) 154507. [Back]
  48. B. Thomsen and M. Shiga, Structures of liquid and aqueous water isotopologues at ambient temperature from ab initio path integral simulations, Physical Chemistry Chemical Physics, (2022) Article in press, DOI: 10.1039/d2cp00499b. [Back]
  49. E. Vogt, I. Simkó, A. G. Császár and H. G. Kjaergaard, Reduced-dimensional vibrational models of the water dimer, The Journal of Chemical Physics, 156 (2022) 164304. [Back]
  50. G. M. Kontogeorgis, A. Holster , N. Kottaki , E. Tsochantaris , F. Topsøe, J. Poulsen, M. Bache, X. Liang, N. S. Blom and J. Kronholm, Water structure, properties and some applications –A review, Chemical Thermodynamics and Thermal Analysis, 6 (2022) 100053. [Back]  [Back to Top to top of page]
  51. K. I. Assaf, M. S. Ural, F. Pan, T. Georgiev, S. Simova, K. Rissanen, D. Gabel and W. M. Nau, Water structure recovery in chaotropic anion recognition: High-affinity binding of dodecaborate clusters to γ-cyclodextrin, Angewandte Chemie International Edition, 54 (2015) 6852-6856. [Back]
  52. P. M. May, D. Batka, G. Hefter, E. Königsberger and D. Rowland, Goodbye to S2− in aqueous solution, Chemical Communications, 54 (2018) 1980-1983. [Back]
  53. L. F. Sedano , S. Blazquez , E. G. Noya , C. Vega and J. Troncoso, Maximum in density of electrolyte solutions: Learning about ion–water interactions and testing the Madrid-2019 force field, The Journal of Chemical Physics, 156 (2022) 154502. [Back]
  54. E. Palos, E. Lambros, S. Dasgupta and F. Paesani, Density functional theory of water with the machine-learned DM21 functional, The Journal of Chemical Physics, 156 (2022) 161103. [Back]
  55. A. Montenegro, C. Dutta, M. Mammetkuliev, H. Shi, B. Hou, D. Bhattacharyya, B. Zhao, S. B. Cronin and A. V. Benderskii, Asymmetric response of interfacial water to applied electric fields, Nature, 594 (2021) 62-65. [Back]
  56. D. Ben-Amotz, Electric buzz in a glass of pure water, Science, 376 (2022) 800-801. [Back, 2, 3]
  57. T. P. Mangan, J. M. C. Plane and B. J. Murray, The phase of water ice which forms in cold clouds in the mesospheres of Mars, Venus, and Earth, Journal of Geophysical Research: Planets, 126, (2021) e2020JE006796; DOI: 10.1029/2020JE006796. [Back]
  58. C. Zhang, F. Giberti, E. Sevgen, J. J. de Pablo, F. Gygi and G. Galli, Dissociation of salts in water under pressure, Nature Communications, 11 (2020) 3037. [Back]
  59. V. Korenbaum, T. Chernysheva, V. Galay, R. Galay, A. Ustinov, S. Zakharkov and N. Bunkin, Possible effect of human-experimenter on homeopathic-like aqueous preparations, Water, 13 (2021) 1475; DOI: 10.3390/w13111475. [Back]
  60. L. Hoffmann, J. Beerwerth, M. Adjei-Körner, V. Fuentes-Landete, C. M. Tonauer, T. Loerting and R. Böhmer, Oxygen NMR of high-density and low-density amorphous ice, The Journal of Chemical Physics, 156 (2022) 084503. [Back]
  61. I. Skarmoutsos, G. Franzese and E. Guardia, Using Car-Parrinello simulations and microscopic order descriptors to reveal two locally favored structures with distinct molecular dipole moments and dynamics in ambient liquid water, Arxiv, cond-mat, (2022) 2206.05214. [Back, 2]
  62. M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, iM. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn and H. Schäfer, Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments, Chemical Society Reviews, 51 (2022) 4583-4762. [Back]
  63. S. Wang, J. Xu, S. Fan, Y. Wang, X. Lang and C. Yu, Atmospheric preservation of CH4 hydrate above ice point: A potential application for high-density natural gas storage under moderate conditions, Fuel, 293 (2021) 120482. [Back]
  64. K. El Kadi and I. Janajreh, Desalination by freeze crystallization: An overview, International Journal of Thermal & Environmental Engineering, 15 (2017) 103-110. [Back]
  65. P. Chen, J. Wohlert, L. Berglund and I. Furó, Water as an intrinsic structural element in cellulose fibril aggregates, The Journal of Physical Chemistry Letters, 13 (2022) 5424-5430. [Back]
  66. A. Gijón and E. R. Hernández, Quantum simulations of neutral water clusters and singly-charged water cluster anions, Physical Chemistry Chemical Physics, 24 (2022) 14440-14451. [Back]
  67. M. Faraday, On certain conditions of freezing water, Athenaeum, 1181 (1850) 640-641. [Back, 2]
  68. M. S. Ahsan, V. Kochetov, D. Hein, S. I. Bokarev and I. Wilkinson, Probing the molecular structure of aqueous triiodide via X-ray photoelectron spectroscopy and correlated electron phenomena, Physical Chemistry Chemical Physics, 24 (2022) 15540-15555. [Back]
  69. F. Novelli, C. Millon, J. Schmidt, S. Ramos, E. P. van Dam, A. Buchmann, C. Saraceno and M. Havenith, Temperature-independent non-linear terahertz transmission by liquid water, arxiv/papers/2206/2206.03998, (2022). [Back]
  70. M. P. M. Marques, I. P. Santos, A. L. M. B. de Carvalho, A. P. Mamede, C. B. Martins, P. Figueiredo, M. Sarter, V. G. Sakai and L. A. E. B. de Carvalho, Water dynamics in human cancer and non-cancer tissues, Physical Chemistry Chemical Physics, 24 (2022) 15406-15415. [Back]
  71. N. Dupertuis, O. B. Tarun, C. Lütgebaucks and S. Roke, 3D confinement of water: H2O exhibits long-range (> 50 nm) structure while D2O does not, arxiV, physics arXiv:2205.14037. [Back]
  72. K. D. Tulsiyan, S. Jena, J. Dutta and H. S. Biswal, Hydrogen bonding with polonium, Physical Chemistry Chemical Physics, 24 (2022) Article in press, DOI: 10.1039/D2CP01852G. [Back]
  73. J. Li, Q. Zhang, B. Chen, L. Wang, R. Zhu and Ji Yang, Hydrogen peroxide formation in water during the VUV/UV irradiation process: Impacts and mechanisms of selected anions, Environmental Research, 195 (2021) 110751. [Back]
  74. G. Chen, Perspectives on molecularl evel understanding of thermophysics of liquids and future research directions, Journal of Heat Transfer, 144 (2022) 010801. [Back]
  75. L. G. M. Pettersson and O. Takahashi , The local structure of water from combining diffraction and X-ray spectroscopy, Journal of Non-Crystalline Solids: X, 14 (2022) 100087. [Back]  [Back to Top to top of page]
  76. A. Krishnamoorthy, K. Nomura, N. Baradwaj, K. Shimamura, R. Ma, S. Fukushima, F. Shimojo, R. K. Kalia, A. Nakano and P. Vashishta, Hydrogen bonding in liquid ammonia, The Journal of Physical Chemistry Letters, 13 (2022) 7051-7057. [Back]
  77. M. L. Chodkiewicz, R. Gajda, B. Lavina, S. Tkachev, V. B. Prakapenka, P. Dera and K. Wozniak. Accurate crystal structure of ice VI from X-ray diffraction with Hirshfeld atom refinement, IUCrJ, 9 (2022), DOI: 10.1107/S2052252522006662. [Back]
  78. J. Kepler, (C. Hardie translator,) The Six-Cornered Snowflake (OUP Oxford), 2014; English translation of Johannes Kepler's essay of 1611, 'On the Six-Cornered Snowflake'; P. Ball, On the six-cornered snowflake, Nature, 480 (2011) 455. [Back]
  79. Y. Tu and G. Chen, Photomolecular effect: Visible light absorption at water-vapor interface, (2022) arxiv.org/abs/2202.10646. [Back]
  80. S. Pyne, P. Pyne and R. K. Mitra, Addition of cholesterol alters the hydration at the surface of model lipids: a spectroscopic investigation, Physical Chemistry Chemical Physics, 24 (2022) Article in press, DOI: 10.1039/d2cp01905a. [Back]
  81. L. Liu, Y. Tian and C. Liu, Mechanistic insights into water autoionization, arXiv:2207.01162v1 [physics.chem-ph] 4 Jul 2022. [Back]
  82. A. V. Finkelstein, S. O. Garbuzynskiy and B. S. Melnik, How can ice emerge at 0  °C? Biomolecules, 12 (2022) 981. [Back]
  83. F. Tang , Z. Li, C. Zhang, S. G. Louie, R. Car, D. Y. Qiu and X. Wu, Many-body effects in the X-ray absorption spectra of liquid water, Proceedings of the National Academy of Sciences, 119 (2022) e2201258119. [Back]
  84. L. Gutiérrez-Loza, E. Nilsson, M. B. Wallin, E. Sahlée and A. Rutgersson, On physical mechanisms controlling air–sea CO2 exchange, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2022-82, in review, 2022. [Back]
  85. V. Korepanov, C.-C. Yu and H. Hamaguchi, Hyper-Raman spectral signatures of structured and de-structured hydrogen-bonded water, Journal of Raman Spectroscopy, (2022) 1-3. [Back, 2]
  86. A. Nilsson, Origin of the anomalous properties in supercooled water based on experimental probing inside “no-man's land”, Journal of Non-Crystalline Solids: X, 14 (2022) 100095. [Back, 2]
  87. Z. Jin, J. Zhao, G. Chen, G. Chen, Z. Luo and L. Xu, Revealing the three-component structure of water with principal component analysis (PCA) of X-ray spectra, Soft Matter, (2022) Article in press, DOI: 10.1039/d2sm00576j. [Back]
  88. F. Novelli, C. Hoberg, E. M. Adams, J. M. Klopf and M. Havenith, Terahertz pump-probe of liquid water at 12.3 THz, P,Physical Chemistry Chemical Physics, 24 (2022) 653-665; A. F. G. van der Meer, Comment on ‘‘Terahertz pump-probe of liquid water at 12.3 THz’’ by F. Novelli, C. Hoberg, E. M. Adams, J. M. Klopf and M. Havenith, Phys. Chem. Chem. Phys., 2022, 24, 653–665, Physical Chemistry Chemical Physics, 24 (2022) 13411-13412; F. Novelli, C. Hoberg, E. M. Adams, J. M. Klopf and M. Havenith, Reply to the ‘Comment on ‘‘Terahertz pump-probe of liquid water at 12.3 THz’’’ by A. F. G. van der Meer, PCCP, 2022, 24, D1CP05216K, Physical Chemistry Chemical Physics, 24 (2022) 13413-13415. [Back]
  89. D. Maltseva, G. Gonella, J.-M. Ruysschaert and M. Bonn, Phospholipid acyl tail affects lipid headgroup orientation and membrane hydration, The Journal of Chemical Physics, 156 (2022) 234706. [Back]
  90. A. Gallo Jr., N. H. Musskopf, X. Liu, Z. Yang, J. Petry, P. Zhang, S. Thoroddsen, H. Imb and H. Mishra, On the formation of hydrogen peroxide in water microdroplets, Chemical Science, 13 (2022) 2574-2583. [Back]
  91. Y. Hu, C. Wu, Q. Pan, Y. Jin, R. Lyu, V. Martinez, S. Huang, J. Wu, L. J. Wayment, N. A. Clark, M. B. Raschke, Y. Zhao and W. Zhang, Synthesis of γ-graphyne using dynamic covalent chemistry, Nature synthesis, 1 (2022) 449-454. [Back]
  92. K. P. Gregory, G. R. Elliott, H. Robertson, A. Kumar, E. J. Wanless, G. B. Webber, V. S. J. Craig, G. G. Andersson and A. J. Page, Understanding specific ion effects and the Hofmeister series, Physical Chemistry Chemical Physics, 24 (2022), 12682-12718. [Back]
  93. R. Shi, The structural order of protein hydration water, Communications in Theoretical Physics, 74 (2022) 095602; arXiv:2208.12073v1 [cond-mat.soft] 25 Aug 2022. [Back]
  94. L. Hoffmann, J. Beerwerth, M. A.-Körner, V. Fuentes-Landete, C. M. Tonauer, T. Loerting and R. Böhmer, Oxygen NMR of high-density and low-density amorphous ice, The Journal of Chemical Physics, 156 (2022) 08450. [Back]
  95. A. Karina, T. Eklund, C. M. Tonauer, H. Li, T. Loerting and K. Amann-Winkel, Infrared spectroscopy on equilibrated high-density amorphous iice,The Journal of Physical Chemistry Letters, 13 (2022) 7965-7971. [Back]
  96. V. Balos, N. K. Kaliannan, H. Elgabarty, M. Wolf, T. D. Kühne and M. Sajadi, Time-resolved terahertz–Raman spectroscopy reveals that cations and anions distinctly modify intermolecular interactions of water, Nature Chemistry, 14 (2022) 1031-1037. [Back]
  97. T. V. Chalikian, Does the release of hydration water come with a Gibbs energy contribution? Journal of Chemical Thermodynamics, 158 (2021) 106409. [Back]
  98. S. Zhou, M. Liu, B. Chen, L. Sun and H. Lu, Microbubble- and nanobubble-aeration for upgrading conventional activated sludge process: A review, Bioresource Technology, 362 (2022) 127826. [Back]
  99. T. Guckeisen, S. Hosseinpour and W. Peukert, Effect of pH and urea on the proteins secondary structure at the water/ air interface and in solution, Journal of Colloid and Interface Science, 590 (2021) 38-49. [Back]
  100. J. A. Dueñas, C. Weiland, I. García-Selfa and F. J. Ruíz-Rodríguez, Magnetic influence on water evaporation rate: an empirical triadic model, Journal of Magnetism and Magnetic Materials, 539 (2021) 168377. [Back]  [Back to Top to top of page

    link 4501 - 4600

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2022 and last updated by Martin Chaplin on 2 September, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License