Dynamical Behavior of Water;
Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 4401- 4500

 

  1. F. Leoni, C. Calero, and G. Franzese, Nanoconfined fluids: Uniqueness of water compared to other liquids, ACS Nano, 15 (2021) 19864-19876. [Back]
  2. H. Tanaka, Roles of liquid structural ordering in glass transition, crystallization, and water’s anomalies. Journal of Non-Crystalline Solids: X, 13 (2022) 100076. [Back, 2]
  3. F. C. Frank, Supercooling of liquids, Proceedings of the Royal Society, London, A, 215 (1952) 43-46. [Back]
  4. G. Gonella, E. H. G. Backus, Y.Nagata, D. J. Bonthuis, P. Loche, A. Schlaich, R. R. Netz, A. Kühnle, I. T. McCrum , M. T. M. Koper, M. Wolf, B. Winter, G. Meijer, R. K. Campen and M. Bonn, Water at charged interfaces, Nature Reviews, Chemistry, 5 (2021) 467-485. [Back]
  5. P. D. Mitev, W. J. Briels and K. Hermansson, Space-resolved OH vibrational spectra of the hydration shell around CO2, Journal of Physical Chemistry B, 125 (2021) 13886-13895. [Back]
  6. A. Rognoni, R. Conte and M. Ceotto, How many water molecules are needed to solvate one? Chemical Scence, 12 (2021) 2060-2064. [Back]
  7. Y. Zhai, P. Luo, J. Waller, L. Self, L. W. Harriger, Y. Z and A. Faraone, Dynamics of molecular associates in methanol/water mixtures, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp04726d. [Back]
  8. Q. Sun, The Raman OH stretching bands of liquid water, Vibrational Spectroscopy, 51 (2009) 213-217. [Back]
  9. C. Steinbach, P. Andersson, J. K. Kazimirski, U. Buck, V. Buch and T. A. Beu, Infrared predissociation spectroscopy of large water clusters: A unique probe of cluster surfaces, Journal of Physical Chemistry A, 108 (2004) 6165-6174. [Back]
  10. G. E. Walrafen, Raman spectral studies of HDO in H2O, The Journal of Chemical Physics, 48 (1968) 244-251. [Back
  11. W.  R. Busing and D. F. Hornig, The effect of dissolved KBr, KOH, or HCl on the Raman spectrum of water, The Journal of Physical Chemistry, 65 (1961) 284-292. [Back
  12. P.C. Cross, J. Burnham and P.A. Leighton, The Raman spectrum and the structure of water, Journal of the American Chemical Society, 59  (1937) 1134-1147. [Back]
  13. G. E. Walrafen, Raman spectral studies of water structure, Journal of Physical Chemistry, 40 (1964) 3249-3256. [Back]
  14. R. J. Meier, On art and science in curve-fitting vibrational spectra, Vibrational Spectroscopy, 39 (2005) 266-269. [Back]
  15. S. Carlson, F. N. Brünig, P. Loche, D. J. Bonthuis and R. R. Netz, Exploring the absorption spectrum of simulated water from MHz to the infrared, Journal of Physical Chemistry, A124 (2020) 5599-5605, arXiv:2003.07260v1 [physics.chem-ph]. [Back]
  16. D. Kojic, R. Tsenkova and M. Yasui, Self-subtraction improves consistency in spectral curve fitting, Journal of Quantitative Spectroscopy & Radiative Transfer, 277 (2022) 107991. [Back]
  17. P. Laurson, P.Raudsepp, H.Kaldmäe, A. Kikas and U. Mäeorg, Gaussians for detection of small changes in plant–water clusters, AIP Advances, 10 (2020) 085214. [Back]
  18. Y. Suzuki, Direct observation of reversible liquid–liquid transition in atrehalose aqueous solution,Proceedings of the National Academy of Sciences, 119 (2021) e2113411119; P. Ball, Direct evidence emerges for the existence of two forms of liquid water, Chemistry World, 19, March (2022) 34-35. [Back, 2, 3]
  19. M. Edalatpour, D. T. Cusumano, S. Nath and J. B. Boreyko, Three-phase Leidenfrost effect, Physical Review Fluids, 7 (2022) 014004; Virginia Tech, Using ice to boil water: Researcher makes heat transfer discovery that expands on 18th century principle (2022, January 21) retrieved 26 January. [Back]
  20. F. Pacheco-Vázquez, R. Ledesma-Alonso, J. L. Palacio-Rangel and F. Moreau, Triple Leidenfrost effect: Preventing coalescence of drops on a hot plate, Physical Review Letters, 127 (2021) 204501; D. Appell, Levitating and colliding liquid drops, (2022, January 14) retrieved 26 January. [Back]
  21. P. G. Brewer, E. T. Peltzer and P. M. Walz, How much H2O is there in the ocean? The structure of water in sea
    water, Journal of Geophysical Research:Oceans, 124 (2019) 212-226. [Back]
  22. M. Demmenie, P. Kolpakov, Y. Nagata, S. Woutersen and D. Bonn, Self-healing behavior of ice,
    arXiv:2111.08367v1 [physics.chem-ph] 16 Nov 2021. [Back]
  23. T. Bui, H. Frampton, S. Huang, I. R. Collins, A. Striolo and A. Michaelides, Water/oil interfacial tension reduction – an interfacial entropy driven process, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp03971g. [Back]
  24. A. E. Gleason, D. R. Rittman, C. A. Bolme, E. Galtier, H. J. Lee, E. Granados, S. Ali, A. Lazicki, D. Swift, P. Celliers, B. Militzer, S. Stanley and W. L. Mao, Dynamic compression of water to conditions in ice giant interiors, Scientific Reports, 12 (2022) 715. [Back]
  25. J. D. Bernardi and i. Mudawar, The Leidenfrost point: Experimental study and assessment of existingmodels, Journal of Heat Transfer, 121 (1999) 894-903. [Back]  [Back to Top to top of page]
  26. A.-L. Biance, C. Clanet and D. Quéré, Leidenfrost drops, Physics of Fluids, 15 (2003) 1632-1637. [Back]
  27. A. Gauthier, C. Diddens, R. Proville, D. Lohse and D. van der Meer, Self-propulsion of inverse Leidenfrost drops on a cryogenic bath, ,Proceedings of the National Academy of Sciences, 116 (2019) 1174-1179; M. Adda-Bedia, S. Kumar, F. Lechenault, S. Moulinet, M. Schillaci and D. Vella, Inverse Leidenfrost effect: Levitating drops on liquid nitrogen, Langmuir,  32 (2016) 4179-4188. [Back]
  28. S. Lyu, V. Mathai, Y. Wang, B. Sobac, P. Colinet, D. Lohse and C. Sun, Final fate of a Leidenfrost droplet: Explosion or takeoff, Science Adances, 5 (2019) eaav8081. [Back]
  29. I. Ohmine and S. Saito, Dynamical behavior of water; Fluctuation, reactions and phase transitions, Bulletin of the Chemical Society of Japan, 94 (2021) 2575-2601. [Back]
  30. T. Castelo-Grande, P. A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, Magnetic water treatment in a wastewater treatment plant: Part I - sorption and magnetic particles, Journal of Environmental Management, 281 (2021) 111872; T. Castelo-Grande, P. A. Augusto, J. Rico, J. Marcos, R. Iglesias, L. Hernández and D. Barbosa, Magnetic water treatment in a wastewater treatment plant: Part II - Processing waters and kinetic study, Journal of Environmental Management, 285 (2021) 112177. [Back]
  31. A. Rosu-Finsen and C. G. Salzmann, Is pressure the key to hydrogen ordering ice IV? Chemical Physics Letters, 789 (2022) 139325. [Back]
  32. Z. Sharif and C. G. Salzmann, Comparison of the phase transitions of high-pressure phases of ammonium fluoride and ice at ambient pressure, The Journal of Chemical Physics, 156 (2022) 014502. [Back]
  33. F. Hirata, Does the second critical-point of water really exist in nature? (2022) arXiv:2201.08556 [cond-mat.stat-mech]. [Back]
  34. X. Sui, H. Guo, C. Cai, Q. Li, C. Wen, X. Zhang, X. Wang, J. Yang and L. Zhang, Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities, Chemical Engineering Journal, 419 (2021) 129478. [Back]
  35. H. Fukui, H. Kadobayashi, H. Abe, R. Takahashi, H.Wadati and N. Hira, Equation of states for dense ice up to 80 GPa at low-temperature conditions,The Journal of Chemical Physics, 156 (2022) 064504. [Back]
  36. I. M. Zeron, M. A. Gonzalez, E. Errani, C. Vega and J. L. F. Abascal, “In Silico” Seawater, Journal of Chemical Theory and Compututation, 17 (2021) 1715-1725. [Back]
  37. M. A. Khan, T. Al-Attas, S. Roy, M. M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P. M. Ajayan and M. G. Kibria, Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science, 14 (2021) 4831-4839. [Back]
  38. J. N. Hausmann, R, Schlögl, P, W. Menezes and M, Driess, Is direct seawater splitting economically meaningful? Energy & Environmental Science, 14 (2021) 3679-3685. [Back]
  39. M. Bin, R. Yousif, S. Berkowicz, S. Das, D. Schlesinger and F. Perakis, Wide-angle X-ray scattering and molecular dynamics simulations of supercooled protein hydration water, Physical Chemistry Chemical Physics, 23 (2021) 18308-18313. [Back]
  40. A. D. Stephens, J. Kölbel, R. Moons, M. T. Ruggerio, N. Mahmoudi, T. A. Shmool, T. M. McCoy, D. Nietlispach, A. F. Routh, F. Sobott, J. A.3 Zeitler and G. S. K. Schierle, The role of water mobility in protein misfolding, bioRxiv preprint doi: https://doi.org/10.1101/2021.01.06.425575. [Back]
  41. H. Guo, P. Mei, J. Xiao, X.Huang, A. Ishag and Y. Sun, Carbon materials for extraction of uranium from seawater, Chemosphere, 278 (2021) 130411. [Back]
  42. N. Silva,1, L. A. Ferreira, A. I. Belgovskiy, P. P. Madeira, J. A. Teixeira, E. K. Mann, J. A.Mann Jr., W. V. Meyer, A. E. Smart, V. Y. Chernyak, V. N. Uverski and B. Y. Zaslavsky, Effects of different solutes on the physical chemical properties of aqueous solutions via rearrangement of hydrogen bonds in water, Journal of Molecular Liquids, 335 (2021) 116288. [Back]
  43. S. Zhou, S. Nazari, A. Hassanzadeh, X. Bu, C. Ni, Y.Peng, G. Xie and Y. He, The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation, Ultrasonics Sonochemistry, 84 (2022) 105965. [Back]
  44. Y. Nozaki, A fresh look at element distribution in the North Pacific, EOS, American Geophysical Union, 78 (1997) 221. [Back]


 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2022 and last updated by Martin Chaplin on 28 March, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License