Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3501- 3600

 

  1. D. Mariedahl, F. Perakis, A. Späh, H. Pathak, K. H. Kim, G. Camisasca, D. Schlesinger, C. Benmore, L. G. M. Pettersson, A. Nilsson and K. Amann-Winkel, X‑ray scattering and O−O pair-distribution functions of amorphous
    ices, Journal of Physical Chemistry B, 122 (2018) 7616-7624. [Back, 2, 3]
  2. A. Späh, H.Pathak, K. H. Kim, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park,cK. H. Nam, T. Katayama and A. Nilsson, Apparent power-law behavior of water’s isothermal compressibility and correlation length upon supercooling, Physical Chemistry Chemical Physics, 21 (2019) 26-31. [Back, 2]
  3. R. Shi, J. Russo and H. Tanaka, Origin of the emergent fragile-to-strong transition in supercooled water, Proceedings of the National Academy of Sciences, 115 (2018) 9444-9449; R. Shi, J. Russo and H. Tanaka, Common microscopic structural origin for water’s thermodynamic and dynamic anomalies, Journal of Chemical Physics, 149 (2018) 224502. [Back, 2]
  4. G. Oruc, T. Varnali and S. Bekiroglu, Hydroxy protons as structural probes to reveal hydrogen bonding
    properties of polyols in aqueous solution by NMR spectroscopy, Journal of Molecular Structure, 1160 (2018) 319-327. [Back]
  5. A. A. Zavitsas, Quest to demystify water: Ideal solution behaviors are obtained by adhering to the equilibrium mass action law, Journal of Physical Chemistry B, 123 (2019) 869-883; Z.-H. Yang, Comment on “The quest to demystify water: Ideal solution behaviors are obtained by adhering to the equilibrium mass action law”, Journal of Physical Chemistry B, 123 (2019) 2459-2460; see also [4101]; A. A. Zavitsas, Reply to Comments on "The quest to demystify water: Ideal solution behaviors are obtained by adhering to the equilibrium mass action law", Journal of Physical Chemistry B, 123 (2019) 869-883. [Back, 2, 3, 4, 5]
  6. R. L. Smith, M. Vickers and C. G. Salzmann, Stacking disorder by design: Factors governing the polytypism of silver iodide upon precipitation and formation from the superionic phase, Chemrxiv preprint (2018) DOI: 10.26434/chemrxiv.7376111.v1. [ Back]
  7. I. Nezbeda and F. Moucka, Thermodynamics of supersaturated steam: Towards an equation of state, Fluid Phase Equilibria, 484 (2019) 114-121. [Back]
  8. Q. Hu, H. Zhao and S.Ouyang, Interpreting the Raman OH/OD stretch band of ice from isotopic substitution and phase transition effects, Physical Chemistry Chemical Physics, 20 (2018) 28600-28605. [Back]
  9. J.-A. Hernandez and R. Caracas, Proton dynamics and the phase diagram of dense water ice, The Journal of Chemical Physics, 148 (2018) 214501. [Back, 2]
  10. Á. Valdés, O. Carrillo-Bohórquez, and R. Prosmiti, Fully coupled quantum treatment of nanoconfined systems: A water molecule inside a fullerene C60, Journal of  Chemical Theory and Computation, 14 (2018)  6521-6531.. [Back]
  11. H. Lee, F. Dehez, C. Chipot, H. K. Lim and H. Kim, Enthalpy-entropy Interplay in Π-Stacking Interaction of Benzene Dimer in Water Journal of  Chemical Theory and Computation, (2018)  Article in press, DOI: 10.1021/acs.jctc.8b00880. [Back]
  12. C. Rao, N. C. Verma, and C. K. Nandi. Unveiling the hydrogen bonding network of Intracellular water by fluorescence lifetime imaging microscopy, Journal of Physical Chemistry C, (2019) Article in press, doi:10.1021/acs.jpcc.8b1243. [Back]
  13. A. J. Colussi and S. Enami, Detecting intermediates and products of fast heterogeneous reactions on liquid surfaces via online mass spectrometry, Atmosphere, 10 (2019) 47; doi:10.3390/atmos10020047. [Back]
  14. D. Wang, T. H. Yeats, S. Uluisik, J. K.C. Rose and G. B. Seymour, Fruit softening: revisiting the role of pectin,
    Trends in Plant Science, 23 (2018) 302-309. [Back]
  15. A. J. Carrier, S. Hamid, D.Oakley, K.Oakes and X. Zhang, Singlet oxygen generation in classical fenton chemistry, ChemRxiv Preprint (2019). [Back]
  16. N. Dubouis, A. Serva, E. Salager, M. Deschamps, M. Salanne, and A. Grimaud, The fate of water at the electrochemical interfaces: Electrochemical behavior of free water vs. coordinating water, Journal of Physical Chemistry Letters, 9 (2018) 6683-6688. [Back]
  17. K. M. Hunter, F. A. Shakib and F. Paesani, Disentangling coupling effects in the infrared spectra of liquid
    water, Journal of Physical Chemistry B, 122 (2018) 10754-10761. [Back]
  18. T. Urbic and K. A. Dill, Water Is a cagey liquid, Journal of the American Chemical Society, 140 (2018) 17106-17113. [Back]
  19. S. Pullanchery, T. Yang and P. S. Cremer, Introduction of positive charges into zwitterionic phospholipid monolayers disrupts water structure whereas negative charges enhances it, Journal of Physical Chemistry B, 122 (2018) 12260-12270. [Back]
  20. C. Vaillant, S. C. Althorpe and D. J. Wales, Path integral energy landscapes for water dimer, Journal of Chemical Theory and Computation, (2019) Article in press, DOI: 10.1021/acs.jctc.8b00675. [Back]
  21. A. W. Milne and M. Jorge, Polarization corrections and the hydration free energy of water, Journal of Chemical Theory and Computation, 15 (2019) 1065-1078. [Back]
  22. T. Fujiyabu, X. Li, U. Chung and T. Sakai, Diffusion behavior of water molecules in hydrogels with controlled network structure, Macromolecules, (2019) Article Ain press, DOI: 10.1021/acs.macromol.8b02488. [Back]
  23. M. Fitzner, G. C. Sossod, S. J. Cox and A. Michaelides, Ice is born in low-mobility regions of supercooled liquid water, Proceedings of the National Academy of Science, 116 (2019) 2009-2014; J. C. Palmer, From water’s ephemeral dance, a new order emerges, Proceedings of the National Academy of Science, 116 (2019) 1829-1831; Correction for Palmer, Proceedings of the National Academy of Science, 116 (2019) 9677. [Back]
  24. (a) S. Naserifar and W. A. Goddard III, The quantum mechanics-based polarizable force field for water simulations, The Journal of Chemical Physics, 149 (2018) 174502; (b) S. Naserifar and W. A. Goddard III, Liquid water is a dynamic polydisperse branched polymer, Proceedings of the National Academy of Science, 116 (2019) 1998-2003; T. Head-Gordon and F. Paesani, Water is not a dynamic polydisperse branched polymer, (2019) arXiv:1905.07007 [physics.chem-ph]; (c) H. Elgabarty and T. D. Kühne, Tumbling with a limp: local asymmetry in water’s hydrogen bond network and its consequences, Physical Chemistry Chemical Physics, 22 (2020) 10397; J. Cobeña-Reyes and M. Sahimi, Rheology of water in small nanotubes, Physical Review E, 102 (2020) 023106. [Back]
  25. D. Shin, J. Hwang and W. Jhe, Ice-VII-like molecular structure of ambientwater nanomeniscus, Nature Communications, 10 (2019) 286. [Back]  [Back to Top to top of page]
  26. L. Lechevallier, S. Vasilchenko, R. Grilli, D. Mondelain, D. Romanini and A. Campargue, The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 μm, Atmospheric Measurement Techniques, 11 (2018) 2159-2171. [Back]
  27. N. J. Hestand, S. E. Strong, L. Shi and J. L. Skinner , Mid-IR spectroscopy of supercritical water:From dilute gas to dense fluid, The Journal of Chemical Physics, 150 (2019) 05450. [Back]
  28. D. C. Elton, M. Fritz and M. Fernández-Serra, Using a monomer potential energy surface to perform approximate path integral molecular dynamics simulation of ab initio water at near-zero added cost, Physical Chemistry Chemical Physics, 21 (2019) 409-417. [Back]
  29. B. Cheng, E. A. Engel, J. Behler, C. Dellago and M. Ceriott, Ab initio thermodynamics of liquid and solid water, Proceedings of the National Academy of Science, 116 (2019) 1110-1115. [Back]
  30. E. Rashed and J. L. Dunn, Interactions between a water molecule and C60 in the endohedral fullerene H2O@C60, Physical Chemistry Chemical Physics, 21 (2019) 3347-3359. [Back]
  31. B. V. Boshenyatov, S. I. Kosharidze and Yu. K. Levin, On the stability of nanobubbles in water, Russian Physics Journal, 61 (2019) 1914-1921; S. I. Koshoridze and Yu. K. Levin, Stability of charged nanobubbles in water, Technical Physics Letters, 44 (2018) 1245-1247. Originally published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 45 (2019) 61-62; S. I. Koshoridze and Yu. K. Levin, Тhermodynamic analysis of the stability of nanobubbles in water, Nanoscience and Technology: An International Journal , 10 (2019) 21-27; doi: 10.1615/NanoSciTechnolIntJ.2018028801. [Back]
  32. V. Fuentes-Landete, L. J. Plaga, M. Keppler, R. Böhmer and T. Loerting, Nature of water’s second glass transition elucidated by doping and isotope substitution experiments, Physical Review X, 9 (2019) 011015. [Back]
  33. T. Loftsson, P. Saokham and A. R. Sá Couto, Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions, International Journal of Pharmaceutics, 560 (2019) 228-234. [Back]
  34. T. Morawietz, A. Singraber, C. Dellago and J. Behler, How van der Waals interactions determine the unique properties of water, Proceedings of the National Academy of Science, 113 (2016) 8368-8373. [Back]
  35. H. Fang, K. Ni, J. Wu, J. Li, L. Huang and D. Reible, The effects of hydrogen bonding on the shear viscosity of liquid water, International Journal of Sediment Research, 34 (2019) 8-13. [Back]
  36. K. Ulatowski, P. Sobieszuk, A. Mróz and T. Ciach, Stability of nanobubbles generated in water using porous membrane system, Chemical Engineering and Processing - Process Intensification, 136 (2019) 62-71. [Back]
  37. J. Jin, Z. Feng, F. Yang and N. Gu, Bulk nanobubbles fabricated by repeatedly compression of microbubbles, Langmuir, (2019) Article in press, DOI: 10.1021/acs.langmuir.8b04314. [Back]
  38. D. Ikuta, Y.Hirata, S. Wakamori, H.Shimada, Y. Tomabechi, Y.Kawasaki, K. Ikeuchi, T. Hagimori, S. Matsumoto and H. Yamada, Conformationally supple glucose monomers enable synthesis of the smallest cyclodextrins, Science, (2019) Article in press, DOI: 10.1126/science.aaw3053 . [Back]
  39. K. Ni, H. Fang, Z. Yu and Z. Fan, The velocity dependence of viscosity of flowing water, Journal of Molecular Liquids, 278 (2019) 234-238. [Back]
  40. F. Eklund and J. Swenson, Stable air nanobubbles in water: the importance of organic contaminants, Langmuir, 34 (2018) 11003-11009; H. Zhang, S. Chen, Z. Guo and X. Zhang, The fate of bulk nanobubbles under gas dissolution, Physical Chemistry Chemical Physics,, (2022) Article in press, DOI: 10.1039/d2cp00283c. [Back]
  41. S. Liu, S.Oshita, D. Q. Thuyet, M. Saito and T. Yoshimoto, Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro, Langmuir, 34 (2018) 11878-11885. [Back]
  42. I. Ohsawa, M. Ishikawa, K. Takahashi K. M. Watanabe, K. Nishimaki, K. Yamagata, K. Katsura, Y. Katayama, S. Asoh and S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine, 13 (2007) 688-694; I. Ohsawa, K. Nishimaki, H. Murakoshi, Y.Yakota and S. Ohta, Consumption of hydrogen water prevents the age-dependent impairment in learning and memory tasks in AD model mice, Alzheimer's & Dementia, 6 (2010) e62. [Back]
  43. Y. Tanaka, Y. Saihara, K. Izumotani and H. Nakamura, Daily ingestion of alkaline electrolyzed water containing hydrogen influences human health, including gastrointestinal symptoms. Medical Gas Research, 8 (2018)160-166; E. Mohaupt and P. Madl, Brown’s Gas for health: Background, observations and medical data, WATER, 11 (2020) 109-131, DOI: 10.14294/WATER.2020.2. [Back]
  44. T. Hamasaki, G. Harada, N. Nakamichi, S. Kabayama, K. Teruya, B. Fugetsu, W. Gong, I. Sakata, S. Shirahat, Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water, PLOS|ONE (2017) DOI: 10.1371/journal.pone.0171192. [Back]
  45. K. Nishimaki, T. Asada, I. Ohsawa, E. Nakajima, C. Ikejima, T. Yokota, N. Kamimura and S. Ohta, Effects of molecular hydrogen assessed by an animal model and a randomized clinical study on mild cognitive impairment, Current Alzheimer Research, 15 (2018) 482-492. [Back]
  46. M. Alheshibri and V. S. J. Craig, Differentiating between nanoparticles and nanobubbles by evaluation of the compressibility and density of nanoparticles, Journal of Physical Chemistry C, 122 (2018) 21998-22007; D. Rak, M. Ovadová and M. Sedlák, (Non)Existence of bulk nanobubbles: The role of ultrasonic cavitation and organic solutes in water, Journal of Physical Chemistry Letters, 10 (2019) 4215-4221. [Back]
  47. X. Wang, K. Binder, C. Chen, T. Koop, U. Pöschl, H. Su and Y. Cheng, Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations, Physical Chemistry Chemical Physics, 21 (2019) 3360-3369. [Back]
  48. A. Elbourne, M. F. Dupont, S. Collett, V. K. Truong, X. Xu, N. Vrancken, V. Baulin, E. P. Ivanova and R. J. Crawford, Imaging the air-water interface: characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy, Journal of Colloid and Interface Science, 536 (2019) 363-371. [Back]
  49. C. Benmore, L. C. Gallington and E. Soignard  Intermediate range order in supercooled water, Molecular Physics, (2019) Article in press, DOI: 10.1080/00268976.2019.1567853. [Back]
  50. K. Ohno, M. Ito, M. Ichihara and M. Ito, Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases, Oxidative Medicine and Cellular Longevity, 2012 (2012) 353152, doi:10.1155/2012/353152. [Back]  [Back to Top to top of page]
  51. M. Atgiéa, J. C. Garrigues, A. Chennevière, O. Masbernat, K. Roger, Gum Arabic in solution: Composition and multi-scale structures , Food Hydrocolloids, 91 (2019) 319-330. [Back]
  52. F. Haq, H. Yu, L. Wang, L. Teng, M. Haroon, R.U. Khan, S. Mehmood, Bilal-Ul-Amin, R.S. Ullah, A. Khan and A. Nazir, Advances in chemical modifications of starches and their applications, Carbohydrate Research, (2019) Article in press, DOI: 10.1016/j.carres.2019.02.007. [Back]
  53. Y. Nagata, T. Hama, E. H. G. Backus, M. Mezger, D. Bonn, M. Bonn and G. Sazaki, The surface of ice under equilibrium and nonequilibrium conditions, Accounts of Chemical Research, 52 (2019) 1006-1015. [Back]
  54. S. N. Salleh, A. A. H. Fairus, M. N. Zahary, N. B. Raj and A. M. M. Jalil, Unravelling the effects of soluble dietary fibre supplementation on energy intake and perceived satiety in healthy adults: Evidence from systematic review and meta-analysis of randomised-controlled trials, Foods, 8 (2019) 15; doi:10.3390/foods8010015. [Back]
  55. J. Dorrell and L. B. Pártay, Thermodynamics and the potential energy landscape: case study of small water clusters, Physical Chemistry Chemical Physics, (2019) Article in press, DOI: 10.1039/c9cp00474b. [Back]
  56. N. B Rego, E. Xi, and A. J. Patel, Protein hydration waters are susceptible to unfavorable perturbations, Journal of the American Chemical Society, 141 (2019) 2080-2086. [Back]
  57. C-N. Yee, C. H. R. Ooi , L-P. Tan, M. Misran M and N-T. Tang, Large-scale structure formation in ionic solution and its role in electrolysis and conductivity. PLoS ONE, 14 (2019) e0213697, DOI: 10.1371/journal.pone.0213697. [Back]
  58. I. Zhovtobriukh, P. Norman and L. G. M. Pettersson, X-ray absorption spectrum simulations of hexagonal ice, The Journal of Chemical Physics, 150 (2019) 034501. [Back]
  59. B. Slater and A. Michaelides , Surface premelting of water ice, Nature Reviews Chemistry, 3 (2019) 172-188. [Back, 2]
  60. N. Zmora, J. Suez and E. Elinav, You are what you eat: diet, health and the gut microbiota, Nature Reviews | Gastroenterology & Hepatology Reviews, 16 (2019) 35-56. [Back]
  61. A-R. Nekoei and M. Vatanparast, Π-Hydrogen bonding and aromaticity: a systematic interplay study, Physical Chemistry Chemical Physics, 21 (2019) 623-630. [Back]
  62. S. S. Stadmiller and G. J. Pielak, Enthalpic stabilization of an SH3 domain by D2O, Protein Science, 27 (2018) 1710-1716. [Back]
  63. N. Matei, R. Camara and J. H. Zhang, Emerging mechanisms and novel applications of hydrogen gas therapy. Medical Gas Research. 8 (2018) 98-102. [Back]
  64. M. V. Manilo, N. I. Lebovka and S. Barany, Effects of sort and concentration of salts on the electrosurface properties of aqueous suspensions containing hydrophobic and hydrophilic particles: Validity of the Hofmeister series, Journal of Molecular Liquids, 276 (2019) 875-884. [Back]
  65. E. Dickinson, Hydrocolloids acting as emulsifying agents e How do they do it? Food Hydrocolloids, 78 (2018) 2-14. [Back]
  66. Z. Dai, Q. Su, D. Lu, L. Sun and W. Liu, A combined experimental and theoretical study on the terahertz vibrations of water vapors, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 214 (2019) 277-284. [Back]
  67. M. Francl, The weight of water, Nature Chemistry, 11 (2019) 284-285. [Back]
  68. N. J. Schork, Time for one-person trials, Nature, 520 (2015) 609-611. [Back]
  69. M. V. Kirov, F-Structure of polyhedral water clusters, Journal of Structural Chemistry, 34 (1994) 557-561, from Zhurnal Strukturnoi Khimii, 34 (1993) 77-82. [Back]
  70. Y. Li and V. Buckin, State of oxygen molecules in aqueous supersaturatedsolutions, Journal of Physical Chemistry B, 123 (2019) 4025-4043;V. Vaz da Cruz, F. Gel’mukhanov, S. Eckert, M. Iannuzzi, E. Ertan, A. Pietzsch , R.. C. Couto, J. Niskanen, M. Fondell, M. Dantz, T. Schmitt, X. Lu, D. McNally, R.M. Jay, V. Kimberg, A. Föhlisch and M. Odelius, Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering, Nature Communications, 10 (2019) 1013. [Back]
  71. V. G. Artemov, A unified mechanism for ice and water electrical conductivity from direct current to terahertz, Physical Chemistry Chemical Physics, 21 (2019) 8067-8072 [Back, 2]
  72. K. Murata and H. Tanaka, Link between molecular mobility and order parameter during liquid–liquid transition of a molecular liquid, Proceedings of the National Academy of Science, (2019) Article in press, DOI: 10.1073/pnas.1822016116. [Back]
  73. Y. Yao, V. Fella, W. Huang, K. A. I. Zhang, K. Landfester, H.-J. Butt, M. Vogel, and G. Floudas, Crystallization and dynamics of water confined in model mesoporous silica particles: Two ice nuclei and two fractions of water
    Langmuir, (2019) Article in press, DOI: 10.1021/acs.langmuir.9b00496. [Back]
  74. K. Hansen, M. J. Ryding and E. Uggerud, Magic numbers and stabilities of heavy water clusters, (D2O)ND+, N = 3 −48, International Journal of Mass Spectrometry, 440 (2019) 14-19. [Back]
  75. A. J. Atkinson, O. G. Apul, O. Schneider, S. Garcia-Segura and P. Westerhoff, Nanobubble technologies offer opportunities to improve water treatment, Accounts of Chemical Research, (2019) Article in press, DOI: 10.1021/acs.accounts.8b00606; T. Lyu, S. Wu, R. J. G. Mortimer and G. Pan, Nanobubble technology in environmental engineering: Revolutionization potential and challenges, Environmental Scicience & Technology, (2019) Article in press, DOI: 10.1021/acs.est.9b02821. [Back]  [Back to Top to top of page]
  76. N. Kučerka, J. Gallová and D. Uhríková, The membrane structure and function affected by water, Chemistry and Physics of Lipids, 221 (2019) 140-144; N. Watanabe, K. Suga and H. Umakoshi, Functional hydration behavior: Interrelation between hydration and molecular properties at lipid membrane interfaces, Journal of Chemistry, 2019 (2019) 4867327. [Back]
  77. D. Mariedahl, F. Perakis, A. Späh, H. Pathak, K. H. Kim, C. Benmore, A. Nilsson and K. Amann-Winkel, X-ray studies of the transformation from high- to low-density amorphous water, Philosphical Transactions of the Royal Society A, 377 (2019) 20180164. [Back]
  78. N. Yang, C. H. Duong, P. J. Kelleher, A. B. McCoy and M. A. Johnson, Deconstructing water’s diffuse OH stretching vibrational spectrum with cold clusters, Science, 364 (2019) 275-278. [Back]
  79. P. E. Brumby, D. Yuhara, T. Hasegawa, D.T. Wu, A. K. Sum and K. Yasuoka, Cage occupancies, lattice constants, and guest chemical potentials for structure II hydrogen clathrate hydrate from Gibbs ensemble Monte Carlo simulations, Journal of Chemical Physics, 150 (2019) 134503. [Back]
  80. S. G. Warren Optical properties of ice and snow, Philosphical Transactions of the Royal Society A, 377 (2019) 20180161. [Back]
  81. S. Liang, K. W. Hall, A. Laaksonen, Z. Zhang and P. G. Kusalik, Characterizing key features in the formation of ice and gas hydrate systems, Philosphical Transactions of the Royal Society A, 377 (2019) 20180167; H. D. Nagashima, T. Miyagi, K. Yasuda and, R. Ohmura, Clathrate hydrates at temperatures below the freezing point of water: A review, Fluid Phase Equilibria, 517 (2020) 112610. [Back]
  82. L. E. Bove and U. Ranieri. Salt- and gas-filled ices under planetary conditions, Philosphical Transactions of the Royal Society A, 377 (2019) 20180262. [Back]
  83. M. Chasnitsky and I. Braslavsky, Ice-binding proteins and the applicability and limitations of the kinetic pinning, Philosphical Transactions of the Royal Society A, 377 (2019) 20180391. [Back]
  84. I. Baker, Microstructural characterization of snow, firn and ice, Philosphical Transactions of the Royal Society A, 377 (2019) 20180162. [Back]
  85. P. A. F. P. Moreira, R. Gomes de Aguiar Veiga and M. de Koning, Elastic constants of Ice Ih as described by semi-empirical water models, Journal of Chemical Physics, 150 (2019) 044503. [Back]
  86. T. Mouterde, P. S. Raux, C. Clanet and D. Quéré, Superhydrophobic frictions, Proceedings of the National Academy of Science, 116 (2019)  8220-8223. [Back]
  87. Y. Huang, K. Li, X. Jiang, Y. Su, X. Cao and J. Zhao, Phase diagram of methane hydrates and discovery of MH-VI hydrate, Journal of Physical Chemistry A,  122 (2018) 6007–6013. [Back]
  88. J. Mouginot, E. Rignot, A. A. Bjørk, M. van den Broeke, R. Millan, M. Morlighem, B. Noël, B. Scheuchl and M. Wood, Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018, Proceedings of the National Academy of Science, (2019)  Article in press, DOI: 10.1073/pnas.1904242116. [Back]
  89. W. Zhu, Y. Huang, C. Zhu, H.-H.Wu, L. Wang, J.Bai, J. Yang, J. S. Francisco, J. Zhao, L.-F. Yuan and X. C. Zeng, Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram, Nature Communications, 10 (2019) 1925. [Back]
  90. E. Bormashenko, Moses effect: physics and applications, Advances in Colloid and Interface Science, (2019) Article in press, DOI: 10.1016/j.cis.2019.04.003. [Back, 2]
  91. P. W. Kuchel, B. E. Chapman, W. A. Bubb, P. E. Hansen, C. J Durrant and M. P. Hertzberg, Magnetic susceptibility: Solutions, emulsions, and cells. Concepts in Magnetic Resonance, 18A (2003) 56-71. [Back]
  92. A. Hudait, Y. Qiu, N. Odendahl and V. Molinero, Hydrogen-bonding and hydrophobic groups contribute equally to the binding of hyperactive antifreeze and ice nucleating proteins to ice, Journal of the American Chemical Society, (2019) Article in press, doi:10.1021/jacs.9b02248. [Back]
  93. C. Päslack, L. V. Schäfer and M. Heyden, Atomistic characterization of collective protein–water–membrane dynamics, Physical Chemistry Chemical Physics, (2019) Article in press, DOI: 10.1039/C9CP00725C. [Back]
  94. T. Seydel, R. M. Edkins and K. Edkins, Picosecond self-diffusion in ethanol–water mixtures, Physical Chemistry Chemical Physics, (2019) Article in press, DOI: 10.1039/c9cp01982k. [Back]
  95. (a) O. Bollengier, J. M.Brown, G. H. Shaw, Thermodynamics of pure liquid water: Sound speed measurements to 700 MPa down to the freezing point, and an equation of state to 2300 MPa from 240 to 500 K Journal of Chemical Physics, 151 (2019) 054501; (b) O. Bollengier, J. M.Brown, G. H. Shaw, Speed of sound of pure water to 700 MPa and an equation of state to 2300 MPa , arXiv.org (2019) 1903.11730; (c) S. Lago, P.A. G. Albo and G. Cavuoto, Speed of sound measurements in deuterium oxide (D2O) at temperatures between (276.97 and 363.15) K and at pressures up to 210 MPa, Fluid Phase Equilibria, 506 (2020) 112401. [Back]
  96. A. D Fortes, Structural manifestation of partial proton ordering and defect mobility in ice Ih, Physical Chemistry Chemical Physics, 21 (2019) 8264-8274. [Back]
  97. M. Aida and D. Akase, Hydrogen-bond pattern to characterize water network, Pure and Applied Chemistry, 91 (2019) 301-316. [Back]
  98. J. N. Stern, M. Seidl-Nigsch and T. Loerting, Evidence for high-density liquid water between 0.1 and 0.3 GPa near 150 K, Proceedings of the National Academy of Sciences, 116 (2019) 9191-9196; P. Gallo and F. Sciortino, Several glasses of water but one dense liquid, Proceedings of the National Academy of Sciences, 116 (2019) 9149-9151. [Back]
  99. V. Vinš, J. Hykl and J. Hrubý, Surface tension of seawater at low temperatures including supercooled region down to – 25 °C, Marine Chemistry, 213 (2019) 13-23 [Back]
  100. C. Cockrell, O. Dicks, V. V. Brazhkin and K. Trachenko, Pronounced structural crossover in supercritical water
    (2019) , arXiv:1905.00747v1 [cond-mat.soft]. [Back, 2]  [Back to Top to top of page]



 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2020 and last updated by Martin Chaplin on 2 September, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License