M. Bühl and A. Hirsch, Spherical
aromaticity of fullerenes, Chemical Reviews, 101 (2001) 1153-1183. [Back]
N. O. Mchedlov-Petrossyan, V. K. Klochkov,
G. V. Andrievsky and A. A. Ishchenko, Interaction between
colloidal particles of C60 hydrosol and cationic
dyes, Chemical Physics Letters, 341 (2001)
237-244. [Back]
G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky and L. A. Vashchenko, On the production of an aqueous colloidal solution of fullerenes, Journal of Chemical Soicety Chemical Communications, 12 (1995) 1281-1282. G. V. Andrievsky, V. K. Klochkov, A.
Bordyuh and G. I. Dovbeshko, Comparative analysis of two
aqueous-colloidal solutions of C60 fullerene
with help of FTIR reflectance and UV-Vis spectroscopy, Chemical
Physics Letters, 364 (2002) 8-17; S. M. Andreev, D. D. Purgina, E. N. Bashkatova, A. V. Garshev, A. V. Maerle and M. R. Khaitov, Facile preparation of aqueous fullerene C60 nanodispersions, Nanotechnologies in Russia, 9 (2014) 369-379 first published in Rossiiskie Nanotekhnologii,9 (2014). [Back]
H. D. B. Jenkins and Y. Marcus, Viscosity B-coefficients of ions in solution, Chemical Reviews, 95 (1995) 2695-2724; Y. Marcus, The effect of complex anions on the structure of water, Journal of Solution Chemistry, 44 (2015) 2258–2265. [Back, 2]
M. V. Korobov, E. B. Stukalin, N. I.
Ivanova, N. V. Avramenko and G. V. Andrievsky, DSC study
of C60 - water system : unexpected peaks. In:
The exciting world of nanocages and nanotubes, P. V. Kamat,
D. M. Guldi, and K. M. Kadish, Eds, Fullerenes12 (2002) 799-814, The Electrochemical
Society Inc., Pennington, NJ, USA. [Back]
J. Havel and E. Högfeldt, Evaluation
of water sorption equilibrium data on Dowex ion exchanger
using WSLET-MINUIT program, Scripta Fac. Science Nat. Univ.
Masaryk. Brun.25 (1995) Chemistry,
73-84. [Back]
Hi. Uedaira and Ha. Uedaira, Role of
hydration of polyhydroxy compounds in biological systems, Cellular and Molecular Biology, 47 (2001) 823-829.
[Back, 2]
L. M. Crowe, Lessons from nature: the
role of sugars in anhydrobiosis, Comp. Biochem. Physiol.
A 131 (2002)
505-513. [Back]
E. Dickinson, Hydrocolloids at interfaces
and the influence on the properties of dispersed systems, Food hydrocolloids17 (2003) 25-39.
[Back, 2, 3]
A. H. Harvey, J. S. Gallagher and J.
M. H. Levelt-Sengers, Revised formulation for the refractive
index of water and steam as a function of wavelength, temperature
and density, Journal of Physical Chemistry Reference Data, 27 (1998) 761-774. [Back, 2]
R. Schmid, Recent advances in the description
of the structure of water, the hydrophobic effect, and the
like-dissolves-like rule, Monatsh. Chem.132 (2001) 1295-1326. T. M. Truskett and K. A. Dill, Predicting
water's phase diagram and liquid-state anomalies, Journal of
Chemical Physics, 117 (2002) 5101-5104.
[Back]
Gyan Johari, Erwin
Mayer, Andreas Hallbrucker and Thomas Loerting all propose that the glass transition
point of water is 136 K. (a) G. P. Johari, G. Astl
and E. Mayer, Enthalpy relaxation of glassy water, Journal of
Chemical Physics, 92 (1990) 809-810. (b)
G. P. Johari, Calorimetric features of high-enthalpy amorphous
solids and glass-softening temperature of water, Journal of
Physical Chemistry B 107 (2003) 9063-9070.
(c) G. P. Johari, State of water at 136 K determined by
its relaxation time Physical Chemistry Chemical Physics, 7 (2005) 1091-1095. (d) I. Kohl, L. Bachmann, E. Mayer, A.
Hallbrucker and T. Loerting, Water behaviour: Glass transition
in hyperquenched water?, Nature, 435 (2005) E1. (e)
I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting,
Liquid-like relaxation in hyperquenched water at <= 140
K, Physical Chemistry Chemical Physics, 7 (2005)
3210-3220 [Back]. However
Austen Angell proposed 165 K (f) V. Velikov, S. Borick,
C. A. Angell, The glass transition of water, based on hyperquenching
experiments, Science, 294 (2001)
2335-2338. (g) D. D. Klug, Glassy water, Science, 294 (2001) 2305-2306, (h) C. A. Angell,
Amorphous water, Annual Reviews of Physical Chemistry 55 (2004) 559-583. (i) Y. Yue and C. A. Angell, Clarifying
the glass-transition behaviour of water by comparison with
hyperquenched inorganic glasses, Nature, 427 (2004)
717 - 720. (j) Y. Yue and C. A. Angell, Water behaviour:
Glass transition in hyperquenched water? (reply), Nature, 435 (2005) E1-E2. The dispute may not be over, see (k) P.
Earis, The
mysterious nature of water, Chemistry World, 2(4)
(2005) 23. But 136 K appears most
likely (S. Capaccioli and K. L. Ngai, Resolving the controversy on the glass transition temperature of water? J Chem Phys.135(2011) 104504), see also [1005] and [1200]. Angell reconciles the different views: (l) C. A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties, Science, 319 (2008) 582-587, However, Jan Swenson and José Teixeira propose ≈ 228 K, (m) J. Swenson and J. Teixeira, The glass transition and relaxation behavior of bulk water and a possible relation to confined water, Journal of Chemical Physics,132 (2010) 014508, and McCartneyand Sadtchenko, propose ≈ 205 K using extrapolation from concentrated solutions of organic solutes, (n) S. A. McCartney and V. Sadtchenko, Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: Evidence for the existence of a unique vicinal phase, Journal of Chemical Physics,138 (2013) 084501. (see also [2048]) [Back, 2]
Alginate junction zone structure optimized
using Hyperchem (Hypercube,
Inc) and the AMBER-96
force field using the C0 parameters for
calcium adapted from J. Aqvist, Ion water interaction potentials
derived from free-energy perturbation simulations Journal of
Physical Chemistry 94 (1990) 8021-8024 (distance
dependent dielectric and (0.5) scaled van der Waals and
electrostatic interaction); similar results are given using
the AMBERS force field. [Back]
F. David, V. Vokhmin and G. Ionova,
Water characteristics depend on the ionic environment. Thermodynamics
and modelisation of the aquo ions. Journal of Molecular Liquids, 90 (2001) 45-62. [Back]
A. J. Rowe, Probing hydration and the
stability of protein solutions - a colloid science approach, Biophysical Chemistry, 93 (2001) 93-101.
[Back]
M. Masamura, Ab initio study of the
structure of CH3COO− in aqueous solution, Journal of Molecular Structure, (Theochem)466 (1999) 85-93. [Back]
H. Muta, M. Miwa and M. Satoh, Ion-specific
swelling of hydrophilic polymer gels, Polymer42 (2001) 6313-6316. H. Muta, S. Kawauchi and M. Satoh, Ion
effects on hydrogen-bonding hydration of polymer an approach
by 'induced force model', Journal of Molecular Structure, (Theochem) 620 (2003) 65-76. [Back]
T. V. Chalikian, Structural thermodynamics
of hydration, Journal of Physical Chemistry B105 (2001) 12566-12578. [Back, 2]
D. A. Ledward, Gelation of gelatin,
in Functional properties of food macromolecules,
ed. J. R. Mitchell and D. A. Ledward (Elsevier Applied Science,
Publishers Ltd, 1986) pp171-201. [Back]
G. M. Mrevlishvili, Low-temperature
heat capacity of biomacromolecules and the entropic cost
of bound water in proteins and nucleic acids (DNA), Thermochim.
Acta308 (1998) 49-54. [Back]
A. E. Oliver, D. K. Hincha and J. H.
Crowe, Looking beyond sugars: the role of amphiphilic solutes
in preventing adventitious reactions in anhydrobiotes at
low water contents, Comp. Biochem. Physiol. A 131 (2002) 515-525. [Back]
P. J. H. Daas, H. A Schols and
H. H. J. de Jongh, On the galactosyl distribution of commercial
galactomannans, Carbohydate Research, 329 (2000) 609-619. [Back, 2]
G. H. Peslherbe. B. M. Ladanyi and J.
T. Hynes, Structure of NaI ion pairs in water clusters, Chemical Physics, 258 (2000) 201-224.
[Back]
C. Simmerling, T. Fox and P. A. Kollman,
Use of locally enhanced sampling in free energy calculations:
Testing and application to the alpha -> beta anomerization
of glucose, Journal of the American Chemical Society, 120 (1998) 5771-5782. [Back]
T. Steiner, Hydrogen bonds from water
molecules to aromatic acceptors in very high-resolution
protein crystal structures, Biophysical Chemistry, 95 (2002) 195-201. [Back] [Back to Top ]
M-C. Ralet, V. Dronnet, H. C. Buchholt
and J.F Thibault, Enzymatically and chemically de-esterified
lime pectins: characterisation, polyelectrolyte behaviour
and calcium binding properties, Carbohydate Research, 336 (2001) 117-125. [Back]
F. Sussich, C. Skopec, J. Brady and
A. Cesàro, Reversible dehydration of trehalose and
anhydrobiosis: from solution state to an exotic crystal? Carbohydate Research, 334 (2001) 165-176.
F. Sussich, C. Skopec, J. Brady and A. Cesàro Corrigendum
to "Reversible dehydration of trehalose and anhydrobiosis:
from solution state to an exotic crystal?" Carbohydrate
Research,338 (2003) 1259. [Back]
S. Pérez, K. Mazeau and C. Hervé
du Penhoat, The three-dimensional structures of the pectic
polysaccharides, Plant Physiol. Biochem.38 (2000) 37-55. [Back]
A. Buléon, P. Colonna, V. Planchot
and S. Ball, Starch granules: structure and biosynthesis, International Journal of Biological Macromolecules, 23 (1998)
85-112. [Back]
K. Esaki, F. Ninomiya, K. Hisaki,
T. Higasa, K. Shibata, K.Murataand S. Aibara, Effects of
high voltage electric field treatment on the water activity
of bread, Biosci. Biotech. Biochem.60 (1996) 1444-1449. [Back]
M. Uudsemaa and T. Tamm, Calculations
of hydrated titanium ion complexes: structure and influence
of the first two coordination spheres, Chemical Physics Letters, 342 (2001) 667-672. M. Uudsemaa and T.
Tamm, Calculations of hydration enthalpies of aqueous transition
metal cations using two coordination shells and central
ion substitution, Chemical Physics Letters, 400 (2004) 54-58. [Back]
P. Stöckel, H. Vortisch, T Leisner
and H. Baumgärtel, Homogeneous nucleation of supercooled
liquid water in levitated microdroplets, Journal of Molecular Liquids, 96-97 (2002) 153-175. [Back]
R. S. Smith, Z. Dohnálek, G.
A. Kimmel, K. P. Stevenson, B. D. Kay, The self-diffusivity
of amorphous solid water near 150 K, Chemical Physics, 258 (2000) 291-305. [Back,2, 3, 4]
V. Elia and M. Niccoli, New physico-chemical
properties of extremely diluted aqueous solutions, Journal of
Therm. Anal. Calorim.75 (2004) 815-836. see also V. Elia, M. Marchese,
M. Montanino, E. Napoli, M. Niccoli, L. Nonatelli and A.
Ramaglia, Hydrohysteretic phenomena of "extremely diluted
solutions" induced by mechanical treatments. A calorimetric
and conductometric study at 25 °C, Journal of Solution Chemistry, 34 (2005) 947-960. [Back]
V. Elia and M. Niccoli, New physico-chemical
properties of water induced by mechanical treatments A calorimetric
study at 25 °C, Journal of Thermal Analytical Calorimetry, 61 (2000) 527-537. [Back, 2]
C. C. M. Samson and W. Klopper, Ab initio
calculation of proton barrier and binding energy of the
(H2O)OH− complex, Journal of Molecular Structure,
(Theochem) 586 (2002) 201-208.
[Back]
Y. Hayashi, N. Shinyashiki and S. Yagihara,
Dynamical structure of water around biopolymers investigated
by microwave dielectric measurements using time domain reflectometry
method, Journal of Non-Crystalline Solids, 305 (2002) 328-332. [Back]
A. Imberty, H. Chanzy and S. Pérez,
The double-helical nature of the crystalline part of A-starch, Journal of Molecular
Biology,201 (1988) 365-378.
[Back, 2]
V. Gupta, S. Nath and S. Chand, Role
of water structure on phase separation in polyelectrolyte-polyethyleneglycol
based aqueous two-phase systems, Polymer 43 (2002) 3387-3390. [Back]
K. Miyata, H. Kanno, T. Niino and K.
Tomizawa, Cationic and anionic effects on the homogeneous
nucleation of ice in aqueous alkali halide solutions, Chemical
Physics Letters, 354 (2002) 51-55. [Back]
B. C. Gordalla and M. D. Zeidler, Molecular-dynamics
in the system water-dimethylsulfoxide - a NMR relaxation
study, Molecular Physics, 59 (1986) 817-828.
[Back]
U. Kaatze, R. Behrends and R. Pottel,
Hydrogen network fluctuations and dielectric spectrometry
of liquids, Journal of Non-Crystalline Solids, 305 (2002) 19-28. [Back, 2]
K. A. T. Silverstein, A. D. J. Haymet
and K. A. Dill, The strength of hydrogen bonds in liquid
water and around nonpolar solutes, Journal of the American Chemical Society, 122 (2000) 8037-8041. [Back]
R. Loris, U. Langhorst, S. De Vos, K.
Decanniere, J. Bouckaert, D. Maes, T. R. Transue, and J.
Steyaert, Conserved water molecules in a large family of
microbial ribonucleases, Proteins36 (1999) 117-134. Protein
Data Bank, 1BVI [Back]
(a) P. Belon, J. Cumps, M. Ennis, P. F. Mannaioni, J. Sainte-Laudy, M. Roberfroid and F. A. C. Wiegant, Inhibition of human basophil degranulation by successive histamine dilutions: Results of a European multi-centre trial, Inflamm. Research 48 Suppl. 1 (1999) S17-S18. P. Belon, J. Cumps, M. Ennis, P.
F. Mannaioni, M. Robertfroid, J. Sainte-Laudy and F. A.
C. Wiegant, Histamine dilutions modulate basophil activation, Inflamm. Research 53 (2004) 181-188.
J. Sainte-Laudy and P. Belon, Use of four different flow cytometric protocols for the analysis of human basophil activation. Application to the study of the biological activity of high dilutions of histamine, Inflamm. Research 55, Suppl. 1 (2006) S23-S24. (b) S. J. Hirst, N. A. Hayes, J. Burridge, F. L. Pearce
and J. C. Foreman, Human basophil degranulation is not triggered
by very dilute antiserum against human IgE, Nature, 366 (1993) 525-527.(c) J. Burridge, A repeat of the 'Benveniste' experiment: Statistical analysis, Research Report 100, Department of Statistical Science, University College London, England. (1992). (d) J. Benveniste, B. Ducot and A. Spira, Memory of water revisited, Nature, 370 (1994) 322. (e) A. Spira, recounted in Heretic 1, Jacques Benveniste BBC2 program 15 July 1994. [Back]
M. Matsumoto, S. Salto and I. Ohmine,
Molecular dynamics simulation of the ice nucleation and
growth process leading to water freezing, Nature, 416 (2002) 409-413. [Back]
(a) J. K. Messer, F. C. De Lucia and P. Helminger, The pure rotational spectrum of water vapor—A millimeter, submillimeter, and far infrared analysis, International Journal of Infrared and Millimeter Waves, 4, (1983) 505-539; P. F. Bernath, The spectroscopy of water
vapour: Experiment, theory and applications, Physical Chemistry
Chemical Physics, 4 (2002) 1501-1509; (b) J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele and N. F. Zobov, A database of water transitions from experiment and theory (IUPAC Technical Report), Pure and Applied Chemistry, 86 (2014) 71-83; J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, A.r Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko and S. V. Shirin, IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part I. Energy levels and transition wavenumbers for H217O and H218O, Journal of Quantitative Spectroscopy & Radiative Transfer, 110 (2009) 573-596. [Back]
R. Corfield, Close encounters with crystalline
gas, Chemistry in Britain38 (2002)
22-25. [Back]
O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Maksyutenko, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson and O. L. Polyansky, Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations, Chemical Physics Letters, 568-569 (2013)14–20. [Back, 2] [Back to Top ]
G. H. Pollack, Is the cell a gel-and
why does it matter? Jap. Journal of Physiol.51 (2001) 649-660. [Back, 2]
J. M. Williams, Thermal and nonthermal
mechanisms of biological interaction of microwaves, arXiv.org Physics e-Print archive physics/0102007 (2002). [Back]
G. B. Kauffman and M. T. Beck, Self-deception
in science; the curious case of Giorgio Piccardi, Speculations
Science Technol.10 (1987) 113-122. [Back]
L. Boulanger, Observations on variations
in electrical conductivity of pure demineralized water:
modification ("activation") of conductivity by
low-frequency, low level alternating electric fields, International
Journal of Biometeorology41 (1998) 137-140.
[Back, 2]
B. Kamb, A. Prakash and C. Knobler,
Structure of ice V, Acta Crystallographica, 22 (1967) 706-715. [Back]
W. F. Kuhs, J. L. Finney, C. Vettier
and D. V. Bliss, Structure and hydrogen ordering in ices VI, VII and VIII by neutron powder diffraction, Journal of Chemical Physics,81 (1984) 3612-3623. [Back]
J. D. Jorgensen and T. G. Worlton, Disordered
structure of D2O ice VII from in situ neutron powder diffraction, J.
Chemical Physics, 83 (1985) 329-333. [Back]
J. M. Besson, P. Pruzan, S. Klotz, G.
Hamel, B. Silvi, R. J. Nelmes, J. S. Loveday, R. M. Wilson
and S. Hull, Variation of interatomic distances in ice-VIII to 10 GPa, Physical Review, B49 (1994)
12540-12550. [Back]
F. De Meyer and C. Capel-Boute, Statistical
analysis of Piccardi chemical tests, International Journal of Biometeorology,31 (1987) 301-322. [Back]
J. Grdadolnik and Y. Maréchal,
Urea and urea-water solutions - an infrared study, Journal of Molecular Structure,615 (2002) 177-189. [Back]
H. R. Sørensen, S. Pedersen and A. S. Meyer, Characterization of solubilized arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan, Enzyme and Microbial Technology,41 (2007) 103-110.
[Back]
R. J. Speedy, Self-replicating structures
in water, Journal of Physical Chemistry88 (1984)
3364-3373. [Back, 2]
C. A. Tischer, M. Iacomini and P. A.
J. Gorin, Structure of the arabinogalactan from gum tragacanth
(Astralagus gummifer), Carbohydate Research, 337 (2002) 1647-1655. [Back]
L. J. Goodrum, A. Patel, J. F. Leykam
and M. J. Kieliszewski, Gum arabic glycoprotein contains
glycomodules of both extensin and arabinogalactan-glycoproteins, Phytochemistry54 (2000) 99-106. D. Renard, L. Lavenant-Gourgeon, M.-C. Ralet and C. Sanchez, Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges, Biomacromolecules7 (2006) 2637-2649.
[Back]
C. Sanchez, D. Renard, P. Robert, C.
Schmitt and J. Lefebvre, Structure and rheological properties
of acacia gum dispersions, Food Hydrocolloids16 (2002) 257-267. [Back]
P. A. Williams and G. O. Phillips,
Gum arabic, in G. O. Phillips and P. A. Williams, Handbook
of hydrocolloids, CRC Press, Cambridge, England (2000)
pp. 155-168. [Back]
M. E. Tuckerman, D. Marx and M. Parrinello,
The nature and transport mechanism of hydrated hydroxide
ions in aqueous solution, Nature, 417 (2002) 925-929. M. E. Tuckerman, A. Chandra and D. Marx, Structure and dynamics of OH− (aq), Accounts of Chemical Research, 39 (2006) 151-158. [Back, 2]
S. Ohsawa, T. Kawamura, N. Takamatsu
and Y. Yusa, Raleigh scattering by aqueous colloidal silica
as a cause for the blue color of hydrothermal water, Journal of
Volcanol. Geotherm. Research 113 (2002)
49-60. [Back]
S. Myneni, Y. Luo, L. Å. Näslund,
M. Cavalleri, L. Ojamäe, H. Ogasawara, A. Pelmenschikov,
Ph. Wernet, P. Väterlein, C. Heske, Z. Hussain, L.
G. M. Pettersson and A. Nilsson, Spectroscopic probing of
local hydrogen-bonding structures in liquid water, Journal of Physics: Condensed Matter, 14 (2002) L213-L219.
[Back, 2]
P. M. Wiggins, Water in complex environments
such as living systems, Physica A314 (2002) 485-491. [Back, 2]
L. J. Michot, F. Villiéras, M.
François, I. Bihannic, M. Pelletier, J-M. Cases,
Water organisation at the solid-aqueous solution interface, Comptes Rendus Geoscience, 334 (2002) 611-631. [Back] [Back to Top ]
A. Khan, M. R. Khan, M. F. Khan and
F. Khanam, A liquid water model that explains the variation
of surface tension of water with temperature, Japanese Journal of
Applied Physics,40 (2001) 1467-1471. [Back]
C. W. Bock, G. D. Markham, A. K. Katz
and J. P. Glusker, The arrangement of first- and second-shell
water molecules around metal ions: effects of charge and
size, Theoretical Chemistry Accounts, 115 (2006)
100-112. [Back, 2]
J. J. Dannenberg, Cooperativity in hydrogen
bonded aggregates. Models for crystals and peptides, Journal of
Molecular Structure,615 (2002) 219-226. [Back]
D. T. Puerta and S. M. Cohen, [(TpMe,Ph)2 Zn2(H3O2 )]ClO4 : a new H3O2 species relevant to zinc
proteinases, Inorganica Chimica Acta, 337 (2002) 459-462. [Back]
(a) K. N. Joshipura, S. Gangopadhyay, C. G. Limbachiya and M. Vinodkumar, Electron impact ionization of water molecules in ice and liquid phases, Journal of Phys.: Conf. Ser.80 (2007) 012008 (b) R. G. Tonkyn, R. Wiedmann, E. R. Grant and M. G. White,
Rotationally resolved photoionization of H2O, Journal of Chemical Physics,95 (1991) 7033-7040.
[Back]
K. Röttger, A. Endriss, J. Ihringer,
S. Doyle and W. F. Kuhs, Lattice constants and thermal expansion
of H2O and D2O ice Ih
between 10 and 265 K, Acta Crystallographica B, 50 (1994) 644-648. [Back, 2]
L. G. Dowell and A. P. Rinfret, Low-Temperature
Forms of Ice as Studied by X-Ray Diffraction, Nature, 188 (1960) 1144-1148. [Back]
B. Kamb B, Ice II:
A proton-ordered form of ice, Acta Crystallographica, 17 (1964) 1437-1449. [Back]
J. D. Londono, W. F. Kuhs and J. L.
Finney, Neutron diffraction studies of ices III and IX on under-pressure and recovered samples, Journal of Chemical Physics,98 (1993) 4878-4888. [Back, 2]
C. G. Salzmann, I. Kohl, T. Loerting,
E. Mayer and A. Hallbrucker, Pure ices IV and XII from high-density amorphous ice, Canadian Journal of Physics,81 (2003) 25-32. [Back]
H. Engelhardt and B. Kamb, Structure
of ice IV,
a metastable high-pressure phase, Journal of Chemical Physics,75 (1981) 5887-5899. [Back]
A. J. Leadbetter, R. C. Ward, J. W.
Clark, P. A. Tucker, T. Matsuo and S. Suga, The equilibrium
low-structure of ice, Journal of Chemical Physics,82 (1985) 424-428. [Back]
S. J. La-Placa, W. C. Hamilton, B. Kamb
and A. Prakash, On a nearly proton-ordered structure for
ice IX, Journal of Chemical Physics, 58 (1973) 567-580
[Back]
M. O'Keeffe, New ice outdoes related
nets in smallest-ring size, Nature, 392 (1998) 879. [Back]
M. Koza, H. Schober, A. Tlle, F. Fujara
and T. Hansen, Formation of ice XII at different conditions, Nature, 397 (1999) 660-661. [Back]
T. Head-Gordon and G. Hura, Water structure
from scattering experiments and simulation, Chemical Reviews, 102 (2002) 2651-2670. [Back]
H. J. Bakker and H.-K. Nienhuys, Delocalization
of protons in liquid water, Science, 297 (2002) 587-590. [Back]
C. A. Tulk, C. J. Benmore, J. Urquidi,
D. D. Klug, J. Neuefeind, B. Tomberli and P. A. Egelstaff,
Structural studies of several distinct metastable forms
of amorphous ice, Science, 297 (2002) 1320-1323. C. A. Tulk, C. J. Benmore, D. D. Klug,
J. Urquidi, J. Neuefeind and B. Tomberli, Response, Science, 299 (2003) 45. [Back, 2, 3]
C. A. Koh, Towards a fundamental understanding
of natural gas hydrates, Chemical Society Reviews,31 (2002) 157-167. E. D. Sloan, Fundamental principles
and applications of natural gas hydrates, Nature, 426 (2003) 353-359. [Back]
M. Cavalleri, H. Ogasawara, L. G. M.
Pettersson and A. Nilsson, The interpretation of X-ray absorption
spectra of water and ice, Chemical Physics Letters, 364 (2002) 363-370. [Back]
I. G. Mogilner, G. Ruderman and J. R.
Grigera, Collagen stability, hydration and native state, Molecular
Biology, 21 (2002) 209-213. [Back]
F. Hajdu, A model of liquid water Tetragonal
clusters: description and determination of parameters, Acta
Chimica (Budapest), 93 (1977) 371-394.
[Back]
L. Otero, A. D. Molina-Garcia and
P. D. Sanz, Some interrelated thermophysical properties
of liquid water and ice.1. A user-friendly modeling review
for high-pressure processing, Critical Reviews in Food Science and Nutrition, 42 (2002) 339-352. [Back]
B.Guillot, A reappraisal of what we
have learnt during three decades of computer simulations
on water, Journal of Molecular Liquids, 101 (2002) 219-260. [Back] [Back to Top ]