Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 4201- 4300

 

  1. G. Lv and X. Sun, The role of air-water interface in the SO3 hydration reaction, Atmospheric Environment, 230 (2020) 117514. [Back]
  2. S. Mondal, S. Mukherjee and B. Bagch, Protein hydration dynamics: much ado about nothing? Journal of Physical Chemistry Letters, 8 (2017) 4878-4882. [Back, 2]
  3. A. R. Imre, How to generate and measure negative pressure in liquids? S. J. Rzoska and V. A. Mazur (eds.), Soft Matter under Exogenic Impacts, Springer, (2007) pp 379-388. [Back]
  4. B. Subbiah, U. K. M. Blank and K. R. Morison, A review, analysis and extension of water activity data of sugars and model honey solutions, Food Chemistry, 326 (2020) 126981. [Back]
  5. T. Loerting and K. R. Liedl, Toward elimination of discrepancies between theory and experiment: The rate constant of the atmospheric conversion of SO3 to H2SO4, Proceedings of the National Academy of Sciences, 97 (2000) 8874–8878. [Back]
  6. A. Adhikari, W.-W. Park and O.-H. Kwon, Hydrogen-bond dynamics and energetics of biological water, ChemPlusChem, 85 (2020) 2657–2665. [Back]
  7. B. Dereka, Q. Yu, N. H. C. Lewis, W. B. Carpenter, J. M. Bowman and A.Tokmakoff, Crossover from hydrogen to chemical bonding, Science, 371 (2021) 160-164; P. Ball, When does a hydrogen bond become a covalent bond? Chemistry World, 18 (2021) 4012975. [Back]
  8. A. H. Paulitsch-Fuchs, N. Stanulewicz, B. Pollner, N. Dyer and E. C. Fuchs, Strong gradients in weak magnetic fields affect the long-term biological activity of tap water, WATER, 12 (2021) 28-45, DOI: 10.14294/WATER.2020.5. [Back]
  9. J. A. Dueñas, C. Weiland, M. A. Núñez and F. J. Ruiz-Rodriguez, Effect of low intensity static magnetic field on purified water in stationary condition: Ultraviolet absorbance and contact angle experimental studies, Journal of Applied Physics, 127 (2020) 133907. [Back]
  10. L. Musilová, A. Mráček, V. Kašpárková, A. Minařík, A. J. M. Valente, E. F. G. Azevedo, L. M. P. Veríssimo, M. M. Rodrigo , M. A. Esteso and A. C. F. Ribeiro, Effect of Hofmeister ions on transport properties of aqueous solutions of sodium hyaluronate, International Journal of Molecular Sciences, 22 (2021) 1932. [Back]
  11. H. Kadobayashi, H. Hirai, H. Ohfuji, M. Ohtake, M. Muraoka, S. Yoshida and Y. Yamamoto, Structural evolution of methane hydrate under pressures up to 134 GPa, Journal of Chemical Physics, 152 (2020) 194308
    [Back]
  12. G. Ren and Y. Wang, Inconsistency between the Stokes-Einstein relation and its variants in supercooled water, (2021) arXiv:2103.00998 [cond-mat.soft]; G. Ren and Y. Wang, Conservation of the Stokes–Einstein relation in supercooled water, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp03972e.. [Back]
  13. S. Wang, A. Lu and C.‑J. Zhong, Hydrogen production from water electrolysis: role of catalysts, Nano Convergenc, 8 (2021) 4; doi:10.1186/s40580-021-00254-x. [Back]
  14. A. Malloum and J .Conradie, Structures of water clusters in the solvent phase and relative stability compared to gas phase, Polyhedron, 193 (2021) 114856. [Back]
  15. V. Kofman, J. He, I. Loes ten Kate, and H. Linnartz, The refractive index of amorphous and crystalline water ice in the UV–vis, The Astrophysical Journal, 875 (2019) 131. [Back]
  16. H .A. Pérez, L. M. Alarcón, A. R. Verde, G. A. Appignanesi, R. E. Giménez, E. A. Disalvo and M. A. Frías, Effect of cholesterol on the hydration properties of ester and ether lipid membrane interphase, Biochimica et Biophysica acta, Biomembranes1863 (2020) 183489. [Back]
  17. J. Dedic, H. I. Okur and S. Roke , Hyaluronan orders water molecules in its nanoscale extended hydration shells, Scence Advances, 7 (2021) eabf2558. [Back]
  18. M. Le Menn, P. A. G. Albo, S. Lag, R. Romeo and F. Sparasci, The absolute salinity of seawater and its measurands, Metrologia, 56 (2019) 015005. [Back]
  19. Y.-J. Kim, P. M. Celliers, J. H. Eggert, A. Lazicki and M. Millot, Interferometric measurements of refractive index and dispersion at high pressure, Scientific Reports, 11 (2021) 5610. [Back, 2]
  20. K. H. Kim, K. Amann-Winkel, N. Giovambattista, A. Späh, F. Perakis, H. Pathak, M. L. Parada, C. Yang, D. Mariedahl, T. Eklund, T.. J. Lane,, S. You, S. Jeong, M. Weston, J. H. Lee, I. Eom, M. Kim, J. Park, S. H. Chun, P. H. Poole, A. Nilsson, Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure, Science, 370 (2020) 978-982; E. Conover, Supercooled water has been caught morphing between two forms, Science News, december 19 (2020). [Back]
  21. D. Li , Z. Zhang , W. Jiang , Y. Zhu , Y. Gao and Z. Wang, Uncooperative effect of hydrogen bond on water dimer, Chinese Physics Letters, 38 (2021) 013101. [Back]
  22. M. S. Marques, V. F. Hernandes, E. Lomba and J. R. Bordin, Competing interactions near the liquid-liquid phase
    transition of core-softened water/methanol mixtures, Journal of Molecular Liquids, 320 (2020) 114420;
    arXiv:2008.09230v1 [cond-mat.stat-mech] 20 Aug 2020; M. S. Marques, V. F. Hernandes and J. R. Bordin, Core-softened water-alcohol mixtures: the solute-size effects, arXiv:2102.09485v1 [cond-mat.soft] 18 Feb 2021. [Back]
  23. C. Huang, D. R. Rice, Z. M. Grande D. Smith, J. S. Smith, J. H Boisvert, O. Tschauner, A. Salamat and J. H. Steffen, Implications of an improved water equation of state for water-rich planets, Monthly Notices of the Royal Astronomical Society, (2021) stab645; arXiv:2103.01410v1 [ astro-ph.EP] 2 Mar 2021. [Back]
  24. V. Babin, C. Leforestier and F. Paesani, Development of a "first principles" water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient, Journal of Chemical Theory and Computation, 9 (2013) 5395-5403; V. Babin, G. R. Medders and F. Paesani, Development of a "first principles" water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters, Journal of Chemical Theory and Computation, 10 (2014) 1599-1607; G. R. Medders, V. Babin and F. Paesani, Development of a "first-principles" water potential with flexible monomers. III. Liquid phase properties, Journal of Chemical Theory and Computation, 10 (2014) 2906-2910; S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D.R. Moberg, M. A. Morales, C. Knight, A. W. Götz and F. Paesani, On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice, Journal of Chemical Physics, 145 (2016) 194504; M. C. Muniz, T. E. Gartner III, M. Riera, C. Knight, S. Yue, F. Paesani and A. Z. Panagiotopoulos, Vapor-liquid equilibrium of water with the MB-pol many-body potential, arXiv.org [cond-mat] arXiv:2103.06978v1. [Back]
  25. A. S. J. Méndez, F. Trybel, R. J. Husband, G. Steinle-Neumann,H.-P. Liermann and H. Marquardt, Bulk modulus of H2O across the ice VII–ice X transition measured by time-resolved x-ray diffraction in dynamic diamond anvil cell experiments, Physical Review B, 103 (2021) 064104. [Back] [Back to Top to top of page]
  26. M. Guthrie, R. Boehler, J. Molaison, B. Haberl, A. M. dos Santos and C. Tulk, Structure and disorder in ice VII on the approach to hydrogen-bond symmetrization, Physical Review B: Condensed Matter and Materials Physics, 99 (2019) 184112. [Back
  27. F. Fillaux, A unified quantum-classical theory of the thermal properties of ice, liquid water and steam, arXiv.org[cond-mat]arXiv:2103.08305v1. [Back
  28. A. Eltareb, G. E. Lopez and N. Giovambattista, Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water, Physical Chemistry Chemical Physics, 23 (2021) 6914-6928. [Back]
  29. A. Mikalčiūtė and L. Vilčiiauskas, Insights into the hydrogen bond network topology of phosphoric acid and water systems, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d0cp05126h. [Back]
  30. M. Belorio , C. Moralejo and M. Gómez, Assessing the influence of psyllium as a fat substitute in wheat and gluten-free cookies, Food Science and Technology International, (2020) DOI: 10.1177/1082013220981332. [Back]
  31. S. Sarkar and B. Bandyopadhyay, Theoretical investigation of the relative impacts of water and ammonia on the tropospheric conversion of N2O5 to HNO3, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d0cp05553k. [Back]
  32. G. J. de Carli, D. Contiliani, S. Giuliatti and T. Pereira, An animal able to tolerate D2O, ChemBioChem, 22 (2021) 988-991. [Back]
  33. L. Cao, W. Lu, A. Mata, K. Nishinari and Y. Fang, Egg-box model-based gelation of alginate and pectin: A review, Carbohydrate Polymers, 242 (2020) 116389. [Back, 2]
  34. W.-W. Park, K. M. Lee, B. S. Lee, Y. J. Kim, S. H. Joo, S. K. Kwak, T. H. Yoo, and O.-H. Kwon, Hydrogen-bond free energy of local biological water, Angewandte Chemie International Edition, 132 (2020) 7155-7162. [Back]
  35. N. Bunkin, A. V. Shkirin, N. V. Penkov, M. V. Goltayev, P.S. Ignatiev, S. V. Gudkov and A. Yu. Izmailov, Effect of gas type and its pressure on nanobubble generation, Frontiers in Chemistry, 9 (2021) DOI: 10.3389/fchem.2021.630074. [Back]
  36. L. A. Dombrovsky, A. A. Fedorets, V. Yu Levashov, A. P. Kryukov, E. Bormashenko and M. Nosonovsky, Stable cluster of identical water droplets formed under the infrared irradiation: Experimental study and theoretical modeling, International Journal of Heat and Mass Transfer, 161 (2020) 120255. [Back]
  37. N. Thakre and A. K. Jana, Physical and molecular insights to Clathrate hydrate thermodynamics, Renewable and Sustainable Energy Reviews, 135 (2021) 110150. [Back]
  38. M. Di Gioacchino, F. Bruni and M. A. Ricci, Hydration of two artificial sweeteners: Possible relevance for their taste, Journal of Molecular Liquids. 320 (2020) 114398. [Back]
  39. W. B. Carpenter, Q. Yu, J. H. Hack, B. Dereka, J. M. Bowman and A. Tokmakoff, Decoding the 2D IR spectrum of the aqueous proton with high-level VSCF/VCI calculations, Journal of Chemical Physics, 153 (2020) 124506. [Back]
  40. W. B. Zimmerman, Towards a microbubble condenser: Dispersed microbubble mediation of additional heat transfer in aqueous solutions due to phase change dynamics in airlift vessels, Chemical Engineering Science, 238 (2021) 116618. [Back]
  41. Z. Wang, J. Liu, Y. Zhang, J. Qi, X. Han, X. Zhao, D. Bai, H. Zhao and Q. Chen, The intrinsic contributions of 2′-hydroxyl to the hydration of nucleoside at monomeric level, Chemistry A European Journal, (2020) DOI: 10.1002/chem.202002835. [Back]
  42. I. Zadok, H. Long, B. Pivovar, A. Roznowska, A. Michalak, D. R. Dekel and, S. Srebnik, Unexpected hydroxide ion structure and properties at low hydration, Journal of Molecular Liquids, 313 (2020) 113485. [Back]
  43. W. Song, L. Liu and G. Liu, Ion specificity of macromolecules in crowded environments. Soft Matter, 11 (2015)
    5940-5946. [Back]
  44. V. B. Svetovoy, Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles, Current Opinion in Colloid & Interface Science, 52 (2021) 101423; arXiv:2102.03126v1 [cond-mat.soft] 5 Feb 2021, [Back]
  45. S. J. Hawkes, pKw is almost never 14.0, Journal of Chemical Education, 72 (1995) 799-802. [Back, 2]
  46. T. Solomon, The definition and unit of ionic strength, Journal of Chemical Education, 78 (2001) 1691-1692; M. E. Sastre de Vicente, The concept of ionic strength eighty years after its introduction in chemistry, Journal of Chemical Education, 81 (2004) 750-753. [Back]
  47. M. B. Davies, M. Fitzner and A. Michaelides, Routes to cubic ice through heterogeneous nucleation, Proceedings of the National Academy of Sciences, 118 (2021) e2025245118. [Back]
  48. K. A. Dill and L. Agozzino, Driving forces in the origins of life, Open Biology, 11 (2021) 200324. [Back]
  49. Y. Nishitsuji, K. Whitney, K. Nakamura, K. Hayakawa and S. Simsek, Changes in structure and solubility of wheat arabinoxylan during the breadmaking process, Food Hydrocolloids, 109 (2020) 106129. [Back]
  50. R.-H. Cheng, H. Cai, Y.-R. Huang, X. Cui, Z. Chen, H.-Y. Chen and S. Ding, A broad-range variable-temperature solid state NMR spectral and relaxation investigation of the water state in Nafion 117, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/c9cp05978d. [Back] [Back to Top to top of page]
  51. J. Conrad and P. R. Tremaine, Third dissociation constant of phosphoric acid in H2O and D2O from 75 to 300 °C at p = 20.4 MPa using Raman spectroscopy and a titanium-sapphire flow cell, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d0cp06266a. [Back]
  52. W. D. Guerra, E. Odella, M. Secor, J. J. Goings, M. N. Urrutia, B. L. Wadsworth, M. Gervaldo, L. E. Sereno, T. A. Moore, G. F. Moore, S. Hammes-Schiffer and A. L. Moore, Role of intact hydrogen-bond networks in multiproton-coupled electron transfer, Journal of the American Chemical Society, 142 (2020) 21842-21851. [Back]
  53. M. Durand, Mechanical approach to surface tension and capillary phenomena, American Journal of Physics, 89 (2021) 261, arxiv.org/pdf/2005.05141; A. Marchand, J. H. Weijs, J. H. Snoeijer and B. Andreotti, Why is surface tension a force parallel to the interface? American Journal of Physics, 79 (2011) 999-10087. [Back]
  54. A. Rognoni, R. Conte and M. Ceotto, How many water molecules are needed to solvate one?, Chemical Science, 12 (2021) 2060-2064; E. Lockyer, Water's minimal solvation structure, Chemistry World, 18(3) (2021) pp 39. [Back, 2, 3]
  55. C. V. Nguyen, H. Nakahara and C. M. Phan, Surface potential of the air/water interface, Journal of Oleo Science, (2020) doi : 10.5650/jos.ess20024. [Back]
  56. T. Komiya, T. Hirata, K. Kitajima, S. Yamamoto, T. Shibuya, Y. Sawaki, T. Ishikawa, D. Shu, Y. Li and J. Han, Evolution of the composition of seawater through geologic time, and its influence on the evolution of life, Gondwana Research, 14 (2008) 159-174; I. Halevy and A. Bachan, The geologic history of seawater pH, Science , 355 (2017) 1069-1071. [Back]
  57. P. Loganathan, G. Naidu and S. Vigneswaran, Mining valuable minerals from seawater: a critical review, Environmental Science Water Research & Technology, 3 (2017) 37-53. [Back]
  58. M. D. Anguelova and P. Huq, Effects of salinity on surface lifetime of large individual bubbles, Journal of Marine Science and Engineering, 5 (2017) 41. [Back]
  59. E. C. Monahan, Comments on ‘‘Bubbles produced by breaking waves in fresh and salt water’’, American Meteorological Society, 31 (2001) 1931-1932. [Back]
  60. S. Poulain, E. Villermaux and L. Bourouiba, Ageing and burst of surface bubbles, Journal of Fluid Mechanics, 851 (2018) 636-671; F. Veron, Ocean Spray, Annual Review of Fluid Mechanics, 47 (2015) 507-538. [Back]
  61. W. Dynkowska, Rye (Secale cereale L.) arabinoxylans: molecular structure, physicochemicals properties and their resulting pro-health effects, Plant Breeding and Seed Science, 81 (2021) 13-32. [Back]
  62. T. E. Kirkes, S. H. Saravi and C.-C. Chen, Thermodynamic modeling of aqueous LiCl, LiBr, LiI, and LiNO3 solutions, Fluid Phase Equilibria, 531 (2021) 112914. [Back]
  63. P. A. Sossi, A. D. Burnham, J. Badro, A. Lanzirotti, M. Newville and H. St.C. O’Neill, Redox state of Earth’s magma ocean and its Venus-like early atmosphere, Science Advances, 6 (2020) eabd1387. [Back]
  64. P. J. Flatau, M. Flatau, J. R. V. Zaneveld and C. D. Mobley, Remote sensing of bubble clouds in seawater, Quarterly Journal of the Royal Meteorological Society, 126 (2000) 2511-2523; arXiv:physics/0006060v1 [physics.ao-ph] 23 Jun 2000. [Back]
  65. K. Schilling and M. Zessner, Foam in the aquatic environment, Water research, 45 (2011) 4355-4366. [Back]
  66. G. M. Marion, F. J. Millero and R. Feistel, Precipitation of solid phase calcium carbonates and their effect on application of seawater SA-T -P models, Ocean Science, 5 (2009) 285-291. [Back]
  67. R. Pawlowicz, D. G. Wright and F. J. Millero,The effects of biogeochemical processes on oceanic conductivity/ salinity/density relationships and the characterization of real seawater, Ocean Science, 7 (2011) 363-387. [Back]
  68. R. Feistel, D. G. Wright, H.-J. Kretzschmar, E. Hagen, S. Herrmann and R. Span, Thermodynamic properties of sea air, Ocean Science, 6 (2010) 91-141. [Back]
  69. M. Prasad and S. N. Chakraborty, Local structure in water and its comparison with hexagonal ice from molecular dynamics simulations of TIP4P/2005 water model, Molecular Simulation, 46 (2020) 557-564. [Back]
  70. Md. S. Rahman, Md. S. Hasan, A. S. Nitai, S. Nam, A. K. Karmakar, Md. S. Ahsan, M. J. A. Shiddiky and M. B. Ahmed, Recent developments of carboxymethyl cellulose, Polymers, 13 (2021) 1345. [Back]
  71. J. M. Harp, L. Coates, B. Sullivan and M. Egli, Water structure around a left-handed Z-DNA fragment analyzed by cryo neutron crystallography, Nucleic Acids Research, 49 (2021) 4782-4792. [Back]
  72. Y. Liu, J. Li, P. M. Felker and Z. Bačic, HCl–H2O dimer: an accurate full-dimensional potential energy surface and fully coupled quantum calculations of intra- and intermolecular vibrational states and frequency shifts, Physical Chemistry Chemical Physics, 23 (2021) 7101-7114. [Back]
  73. S. Teh, P.-J. Hsu and J.-L. Kuo, Size of the hydrogen bond network in liquid methanol: a quantum cluster equilibrium model with extensive structure search, Physical Chemistry Chemical Physics, 23 (2021) 9166-9175. [Back]
  74. K. M. Herman, J. P. Heindel and S. S. Xantheas, The many-body expansion for aqueous systems revisited: III. Hofmeister ion–water interactions, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/D1CP00409C. [Back]
  75. V. V. Welborn, Environment-controlled water adsorption at hydroxyapatite/collagen interfaces, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp01028j. [Back] [Back to Top to top of page]
  76. I. Kolling, C. Hölzl, S. Imoto, S. R. Alfarano, H. Vondracek, L. Knake, F. Sebastiani, F. Novelli, C. Hoberg, J.-B. Brubach, P. Roy, H. Forbert, G. Schwaab, D. Marx and M. Havenith, Aqueous TMAO solution under high hydrostatic pressure, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d1cp00703c. [Back]
  77. J. Kirschner, A. H. A. Gomes, R. T. Marinho, O. Björneholm, H. Ågren, V. Carravetta, N. Ottosson, A. N. de Brito and H. J. Bakker, The molecular structure of the surface of water–ethanol mixtures, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 1039/d0cp06387h. [Back]
  78. M. Li, X. Ma, J. Eisener, P. Pfeiffer, C.-D. Ohl and C. Sun, How bulk nanobubbles are stable over a wide range of temperatures, Journal of Colloid and Interface Science, 596 (2021) 184-198. [Back]
  79. Y. Yang, C. Y. Chen, D. P. Liu, A. Raj, H. Hamaguchi, H. B. Qiu, Y. J. Lin, C. L. Wang and X. S. Wang, Vesicular membrane with structured interstitial water, Journal of Physical Chemistry B, 124 (2020) 9239-9245. [Back]
  80. C.-W. Wang, J. Wang, Y.-S. Liu, J. Li, X.-L. Peng, C.-S. Jia, L.-H. Zhang, L.-Z. Yi, J.-Y. Liu, C.-J. Li and X Jia, Prediction of the ideal-gas thermodynamic properties for water, Journal of Molecular Liquids, 321 (2021) 114912. [Back]
  81. H. Pathak, A. Späh, N. Esmaeildoost, J. A. Sellberg, K. H. Kic, F. Perakis, K. Amann-Winkel, M. Ladd-Parada, J. Koliyadu, T. J. Lane, C. Yang, H. Till Lemke, A. R. Oggenfuss, P. J. M. Johnson, Y. Deng, S. Zerdane, R. Mankowske, P. Beaud and A. Nilsson, Enhancement and maximum in the isobaric specific-heat capacity measurements of deeply supercooled water using ultrafast calorimetry, Proceedings of the National Academy of Sciences, 118 (2021) e2018379118. [Back]
  82. A. Kholmanskiy, Hydrogen bonds and dynamics of liquid water and alcohols, Journal of Molecular Liquids, 325 (2021) 115237; arxiv/papers/2012/2012.00858. [Back]
  83. L. Kringle, W. A. Thornley, B. D. Kay and G. A. Kimmel, Structural relaxation and crystallization in supercooled water from 170 to 260 K, Proceedings of the National Academy of Sciences, 118 (2021) e2022884118. [Back]
  84. F. Maxim, K. Karalis, P. Boillat, D. T. Banuti, J. I. M. Damian, B. Niceno, and C. Ludwig, Thermodynamics and dynamics of supercritical water pseudo-boiling, Advanced Science, 8 (2021) 2002312. [Back]
  85. D. A. Bailey, M. M. Holland, A. K. DuVivier, E. C. Hunke and A. K. Turner, Impact of a new Sea Ice Thermodynamic Formulation in the CESM2 Sea Ice Component, Journal of Advances in Modeling Earth Systems, 12 (2020) e2020MS002154. DOI: 10.1029/2020MS002154. [Back]
  86. R. K. Mitra and D. K. Palit, Probing biological water using terahertz absorption spectroscopy, IntechOpen, (2021)
    DOI: 10.5772/intechopen.97603. [Back]
  87. H. Masuda, A. Sato, K. Miyata, T. Shizuno, A. Oyamada, K. Ishiwata, Y. Nakagawa and T. Asahara, Drinking molecular hydrogen water Is beneficial to cardiovascular function in diet-induced obesity mice, Biology, 10 (2021) 364. DOI: 10.3390/biology10050364. [Back]
  88. V. E. Zakhvataev and L. A. Kompaniets, On the existence of soliton‑like collective modes in liquid water at the viscoelastic crossover, Scientific Reports, 11 (2021) 5417. [Back]
  89. C. G. Salzmann, A. Rosu-Finsen, Z. Sharif, P. G. Radaelli and J. L. Finney, Detailed crystallographic analysis of the ice V to ice XIII hydrogen-ordering phase transition Journal of Chemical Physics, 154 (2021) 134504. [Back]
  90. C. G. Salzmann, J. S. Loveday, A. Rosu-Finsen and C. L. Bull, Structure and nature of ice XIX, Nature Communications, 12 (2021) 3162; T. C. Hansen, The everlasting hunt for new ice phases, Nature Communications, 12 (2021) 3161. [Back]
  91. F. J. A. L. Cruz and J. P. B. Mota, Structure and thermodynamics of empty clathrate hydrates below the freezing point of water, Physical Chemistry Chemical Physics, 23 (2021) 16033 [Back]
  92. S. Wang, L. Zhou and Y. Gao, Can bulk nanobubbles be stabilized by electrostatic interaction? Physical Chemistry Chemical Physics, (2021) Article in press, doi: 10.1039/d1cp01279g. [Back]
  93. Y. Kazoe, K.a Mawatari, L. Li, H.i Emon, N. Miyawaki, H. Chinen, K. Morikawa, A. Yoshizaki, P. S. Dittrich and T. Kitamori, Lipid bilayer-modified nanofluidic channels of sizes with hundreds of nanometers for characterization of confined water and molecular/ion transport, Letters, 11 (2020) 5756-5762. [ Back]
  94. N. A. Dudukovic, E. J. Fong, H. B. Gemeda, J. R. DeOtte, M. R. Cerón, B. D. Moran, J. T. Davis, S. E. Baker and E. B. Duoss, Cellular fluidics, Nature, 595 (2021) 58-65; T. L. van Neel and A. B. Theberge, Programmable capillary action controls fluid flows, Nature, 595 (2021) 31-32. [Back]
  95. A. S. Rosa, E. A. Disalvo and M. A. Frias, Water behaviour at the phase transition of phospholipid matrixes assesed by FTIR, Journal of Physical Chemistry B, 124 (2020) 6236-6244. [Back]
  96. K. Hayamizu, Y. Chiba and T. Haishi, Dynamic ionic radius of alkali metal ions in aqueous solution: a pulsed-field gradient NMR study, RSC Advances, 11 (2021) 20252-20257. [Back]
  97. S. Shimizu and N. Matubayasi, Cooperativity in micellar solubilization, Physical Chemistry Chemical Physics, 23 (2021) 8705-8716. [Back]
  98. S.Choi, S. Parameswaran and J.-H. Choi, Effects of molecular shape on alcohol aggregation and water hydrogen bond network behavior in butanol isomer solutions, Physical Chemistry Chemical Physics, 23 (2021) 12976-12987. [Back]
  99. X.-C. Wang, X.-L. Zhu, Y. Gu, H.-C. Wang, X.-L. Qin, J.-W. Cao, X.-H. Yu, X.-Q. Yuan and P. Zhang, Comparative analysis of hydrogen-bonding vibrations of ice VI, ACS Omega, 6 (2021) 14442-14446. [Back]
  100. S. Luo, Y. Jin, R. Tao, H. Li, C. Li, J. Wang and Z. Li, Molecular understanding of ion rejection in the freezing of aqueous solutions, Physical Chemistry Chemical Physics, 23 (2021) 13292-13299. [Back] [Back to Top to top of page]



 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2021 and last updated by Martin Chaplin on 2 September, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License