J. Yang, S. Meng, L. F. Xu and E. G.
Wang, Ice tesselation on a hydroxylated silica surface, Physical Review Letters92 (2004) 146102.
[Back]
T. Yokomizo, M. Nakasako, T. Yamazaki,
H. Shindo and J. Higo, Hydrogen-bond patterns in the hydration
structure of a protein, Chemical Physics Letters, 401 (2005) 332-336. T. Yokomizo, J. Higo and M. Nakasako, Patterns
and networks of hydrogen-bonds in the hydration structure
of human lysozyme, Chemical Physics Letters, 410 (2005) 31-35. [Back]
H. Inaba, T. Saitou, K. Tozaki, and
H. Hayashi, Effect of the magnetic field on the melting
transition of H2O and D2O measured
by a high resolution and supersensitive differential scanning
calorimeter, J. Appl. Phys.96 (2004) 6127-6132. [Back]
H. Yu and W. F. van Gunsteren, Charge-on-spring
polarizable water models revisited: from water clusters
to liquid water to ice, Journal of Chemical Physics,121 (2004) 9549-9564. [Back, 2]
Y. Toshimura, H. Mao and R. J. Hemley,
Transformation of ice in aqueous KCl solution to a high-pressure,
low temperature phase, Chemical Physics Letters, 400 (2004) 511-514. [Back]
H. Kanno and C. A. Angell, Water: Anomalous
compressibilities to 1.9 kbar and correlation with supercooling
limits, Journal of Chemical Physics,70 (1979)
4008-4016. [Back]
C. H. Spink and J. B. Chaires, Effects
of hydration, ion release, and excluded volume on the melting
of triplex and duplex DNA, Biochemistry38 (1999) 496-508. [Back]
E. Rozners and J. Moulder, Hydration
of short DNA, RNA and 2'-OMe oligonucleotides determined
by osmotic stressing, Nucleic Acids Research 32 (2004) 248-254; Corrigendum, Nucleic Acids Research 32 (2004) 6153. [Back]
J. M. Hermida-Ramón and G.Karlström,
Study of the hydronium ion in water, A combined quantum
chemical and statistical mechanical treatment, Journal of Mol.
Struct. Theochem712 (2004) 167-173.
[Back]
P. Pesic, The sky is falling: Newton's
droplets, Clausius's bubbles and Tyndall's 'sky matter', Eur. Journal of Phys.26 (2005) 189-193.
[Back]
(a) R. M. Pashley, M. Rzechowicz, L.
R. Pashley and M. J. Francis, De-gassed water Is a better
cleaning agent, Journal of Physical Chemistry B 109 (2005) 1231-1238. (b) M. J. Francis, N. Gulati and R. M.
Pashley, The dispersion of natural oils in de-gassed water, Journal of Colloid and Interface Science, 299 (2006) 673-677. (c) R. M. Pashley, M. J. Francis and M. Rzechowicz, The hydrophobicity of non-aqueous liquids and their dispersion in water under de-gassed conditions, Curr. Opin. Colloid Interface Science 13 (2008) 236-244. It is suggested that carbonic acid may increase in frozen samples (produced by freeze-thaw degassing) at the cost of any dissolved CO2 [3450], and subsequently giving rise to excess bicarbonate. This bicarbonate may also cause the emulsification of oil in aqueous solutions after freeze/thaw degassing. [Back, 2, 3, 4, 5, 6, 7]
X. Yu and D. M. Leitner, Thermal transport
in liquid and glassy water computed with normal modes, Chemical
Physics Letters, 398 (2004) 480-485. [Back]
M. Barteri, A. Pala and S. Rotella,
Structural and kinetic effects of mobile phone microwaves
on acetylcholin-esterase activity, Biophysical Chemistry, 113 (2005) 245-253. [Back]
J. C. Dore, M. Garawi and M.-C. Bellissent-Funel,
Neutron diffraction studies of the structure of water at
ambient temperatures, revisited [a review of past developments
and current problems, Molecular Physics,102 (2004) 2015-2035. [Back]
W. M. Jones, The triple point temperature
of tritium oxide, Journal of the American Chemical Society, 74 (1952) 6065-6066. [Back]
V. F. Petrenko and R. W. Whitworth, Physics of ice (Oxford University Press, Oxford,
1999). [Back, 2, 3, 4]
J. Urquidi, C. J. Benmore, P. A Egelstaff, M.Guthrie, S. E. McLain, C. A. Tulk, D. D. Klug and J.
F. C. Turner, A structural comparison of supercooled water
and intermediate density amorphous ices, Molecular Physics,102 (2004) 2007-2014. [Back]
R. J. Hemley, A. P. Jephcoat, H. K.
Mao, C. S. Zha, L. W. Finger and D. E. Cox, Static compression
of H2O-ice to 128 GPa (1.28 Mbar). Nature, 330 (1987) 737-740. [Back]
S. J. Schmidt, Water and solids mobility
in foods, Advances in Food & Nutrition Research 48 (2004) 1-101. [Back]
T. C. Davidson, R. H. Newman and M.
J. Ryan, Variations in the fibre repeat between samples
of cellulose I from different sources, Carbohydate Research, 339 (2004) 2889-2893. [Back]
(a) E. E. Meyer, Q. Lin and J. N. Israelachvili,
Effects of dissolved gas on the hydrophobic attraction between surfactant-coated surfaces, Langmuir, 21 (2005) 256-259; (b) H. Stevens, R. F. Considine, C. J. Drummond,
R. A. Hayes and P. Attard, Effects of degassing on the long-range
attractive force between hydrophobic surfaces in water, Langmuir, 21 (2005) 6399-6405; (c) E. E. Meyer, K. J. Rosenberg and J. Israelachvili, Recent progress in understanding hydrophobic interactions, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006) 15739-15746. [Back]
M. R. Mangione, D. Giacomazza, D. Bulone,
V. Martorana, G. Cavallaro and P.L. San Biagio, K+ and Na+ effects on the gelation properties of κ-carrageenan, Biophysical Chemistry, 113 (2005) 129-135.
[Back]
B. J. Yoon, Is liquid water a hot quantum
fluid? Anomalies of water in thin liquid films and in biological
systems, Bulletin Korean Chem.ical Society,24 (2003) 1211-1214. [Back]
E. Meyer, Internal water-molecules and
H-bonding in biological macromolecules - a review of structural
features with functional implications, Protein Science, 1 (1992) 1543-1562. [Back] [Back to Top ]
A. Khan, M. R. Khan, M. F. Khan and
F. Khanam, A liquid water model: explaining the anomalous
density variation of liquid D2O and shifting
of density maximum under pressure, Journal of Molecular Structure (Theochem), 679 (2004) 165-170. [Back]
W. Dzwolak and V. Smirnovas, A conformational α-helix to β-sheet
conformational transition accompanies racemic self-assembly
of polylysine: an FT-IR spectroscopic study, Biophysical
Chemistry,115 (2005) 49-54. [Back]
M. P. Hodges, A. J. Stone and S. S.
Xantheas, Contribution of many-body terms to the energy
for small water clusters: A comparison of ab initio calculations and accurate model potentials, Journal of Physical
Chemistry A, 101 (1997) 9163-9168; M. Riera, E. Lambros, T. T. Nguyen, A. W. Goetz and F. Paesani, Low-order many-body interactions determine the local structure of liquid water, (2019) https://doi.org/10.26434/chemrxiv.8026553.v1 [Back]
F. H. Stillinger, Water revisited, Science, 209 (1980) 451-457. [Back, 2]
T. Yokono, S. Shimokawa, T. Mizuno,
M. Yokono and T. Yokokawa, Clathrate-like ordering in liquid
water induced by infrared irradiation, Japanese Journal of Applied Physics,43 (2004) L1436-L1438. [Back, 2, 3]
B. J. Yoon and M. S. Jhon, Stability
of the pentagon structure of water cluster, Bulletin of the Korean
Chemical Soc.iety,12 (1991) 67-70. [Back]
H. Eyring and M. S. Jhon, Significant
liquid structures, (John Wiley & Sons, New York, 1969).
[Back]
S. D. Hong and M. S. Jhon, Theoretical
study on the role of water in anesthesia,Bulletin of the Korean
Chemical Soc.iety,7 (1986) 388-391; N. Kundacina, M. Shi and G. H. Pollack, Effect of local and general anesthetics on interfacial water PLoS ONE11 (2016) e0152127. doi:10.1371/journal.pone.0152127. [Back]
A. Khan, Solvated electron (H2O)20− dodecahedral cavity: calculated stretch frequencies and
vertical dissociation energy, Chemical Physics Letters, 401 (2005) 85-88. [Back]
Y. I. Cho and S.-H. Lee, Reduction in
the surface tension of water due to physical water treatment
for fouling control in heat exchangers, International Communications in Heat and Mass Transfer,32 (2005) 1-9.
[Back, 2]
E. V. Tsiper, Polarization forces in
water deduced from single molecule data, Physical Review
Letters, 94 (2005) 013204. [Back, 2, 3, 4]
T. S. Light, S. Licht, A. C. Bevilacqua
and K. R. Morash, The fundamental conductivity and resistivity
of water, Electrochemical and Solid-State Letters, 8 (2005) E16-E19. [Back, 2, 3]
(a) O. Teschke and E. F. de Souza, Water
molecular arrangement at air/water interfaces probed by
atomic force microscopy, Chemical Physics Letters, 403 (2005) 95-101. (b) O. Teschke and E. F. de Souza, Water
molecule clusters measured at water/air interfaces using
atomic force microscopy, Physical Chemistry Chemical Physics, 7 (2005) 3856-3865. [Back]
S. Ikeda, T. Takata, M. Komoda, M. Hara,
J. N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe,
Mechano-catalysis - a novel method for overall water splitting, Physical Chemistry Chemical Physics, 1 (1999)
4485-4491. G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N.
Kondo, M. Kakihana and K. Domen, Mechano-catalysis overall
water splitting on some mixed oxides, Catalysis Today, 63 (2000) 175-181. [Back, 2]
T. S. Pennanen, J. Vaara, P. Lantto,
A. J. Sillanpää, K. Laasonen and J, Jokisaari,
Nuclear magnetic shielding and quadrupole coupling tensors
in liquid water: A combined molecular dynamics simulation
and quantum chemical study, Journal of the American Chemical Society, 126 (2004) 11093-11102. [Back]
A. Grossfield, Dependence of ion hydration
on the sign of the ion's charge, Journal of Chemical Physics,122 (2005) 024506. [Back]
A. Grossfield, P. Ren and J. W. Ponder,
Ion solvation thermodynamics from simulation with a polarizable
force field, Journal of the American Chemical Society, 125 (2003) 15671-15682. [Back]
A. Salabat, L. Shamshiri and F. Sahrakar,
Thermodynamic and transport properties of aqueous trisodium
citrate system at 298.15 K, Journal of Molecular Liquids, 118 (2005) 67-70. [Back]
J. S. Delaney, Predicting aqueous solubility
from structure, Drug Discovery Today 10 (2005) 289-295. [Back]
J. L. Finney, Water? What's so special
about it? Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (2004) 1145-1165. [Back]
R. Martoñák, D. Donadio
and M. Parrinello, Evolution of the structure of amorphous
ice - from low-density amorphous (LDA) through high-density
amorphous (HDA) to very high-density amorphous (VHDA) ice, Journal of Chemical Physics, 122 (2005) 134501.
[Back, 2]
Z. Burkus and F. Temelli, Rheological
properties of barley β-glucan, Carbohydrate Polymers, 59 (2005) 459-465.
[Back]
K. Umemoto and R. M. Wentzcovitch, Low high density tranformations
in ice, Chemical Physics Letters, 405 (2005) 53-57. [Back]
M. L. Cowan, B. D. Bruner, N. Huse,
J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser
and R. J. D. Miller, Ultrafast memory loss and energy redistribution
in the hydrogen bond network of liquid H2O, Nature, 434 (2005) 199-202. [Back, 2, 3] [Back to Top ]
B. J. Murray, D. A. Knopf and
A. K. Bertram, The formation of cubic ice under conditions
relevant to Earth's atmosphere, Nature, 434 (2005) 202-204. B. J. Murray and A. K. Bertram, Formation
and stability of cubic ice in water droplets, Phys.
Chem. Chemical Physics, 8 (2006) 186-192.
[Back]
M. J. Hey, D. P. Jackson and H. Yan,
The salting-out effect and phase separation in aqueous solutions
of electrolytes and poly(ethylene glycol), Polymer46 (2005) 2567-2572. [Back]
M. Wada, H. Chanzy, Y. Nishiyama, and
P.Langan, Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray
and neutron fiber diffraction, Macromolecules37 (2004) 8548 -8555. [Back]
(a) S. Klotz, Th. Strässle, R. J. Nelmes,
J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin
and A. M. Saitta, Nature, of the polyamorphic transition
in ice under pressure, Physical Review Letters94 (2005) 025506. (b) C. A. Tulk, C. J. Benmore, D. D. Klug and J. Neuefeind, Comment on "Nature, of the polyamorphic transition
in ice under pressure", Physical Review Letters96 (2006) 149601. (c) S. Klotz, Th. Strässle, R. J. Nelmes, J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin, and A. M. Saitta, Klotz et al. Reply: Physical Review Letters 96 (2006) 149602. [Back]
E. G. Diken, J. M. Headrick, J. R. Roscioli,
J. C. Bopp, M.A. Johnson, and Anne B. McCoy, Fundamental
excitations of the shared proton in the H3O2− and H5O2+ complexes, Journal of
Physical Chemistry A 109 (2005) 1487-1490.
[Back]
S. Klotz, Th.Strässle, A. M. Saitta,
G. Rousse, G. Hamel, R. J. Nelmes, J. S. Loveday and M.
Guthrie, In situ neutron diffraction studies of high density
amorphous ice under pressure, Journal of Physics: Condensed Matter,17 (2005) S967-S974. [Back]
(a) E. E. Fesenko and A. Ya. Gluvstein,
Changes in the state of water, induced by radiofrequency
electromagnetic fields, FEBS Letters, 367 (1995) 53-55. (b) M. Yamashita, C. A. Duffield and W. A.
Tiller, Direct current magnetic field and electromagnetic
field effects on the pH and oxidation-reduction potential
equilibration rates of water. 1. Purified water, Langmuir, 19 (2003) 6851-6856. [Back]
Z. S. Nickolov and J. D. Miller, Water
structure in aqueous solutions of alkali halide salts: FTIR
spectroscopy of the OD stretching band, Journal of Colloid and Interface Science, 287 (2005) 572-580. [Back, 2]
G. Trombetta, C. Di Bona and E. Grazi,
The transition of polymers into a network of polymers alters
per se the water activity, International Journal of Biological Macromolecules, 35 (2005) 15-18. [Back]
I. Donati, S. Holtan, Y. A. Mørch,
M. Borgogna, M. Dentini and Skjåk-Bræk, New
hypothesis on the role of alternating sequences in calcium-alginate
gels, Biomacromolecules,6 (2005)
1031-1040. [Back]
Y. Yonetani, A severe artifact in simulation
of liquid water using a long cut-off length: Appearance
of a strange layer structure, Chemical Physics Letters, 406 (2005) 49-53. [Back]
G. Ling, What determines the normal
water content of a living cell? Physiol. Chem.Phys.
& Med. NMR,36 (2004) 1-19. [Back]
T. Yagasaki, K. Iwahashi, S. Saito and
I. Ohmine, A theoretical study on anomalous temperature
dependence of pKw of water, Journal of Chem.
Phys.122 (2005) 144504. [Back]
H. Whiting, A new theory of cohesion
applied to the thermodynamics of liquids and solids, Proceedings of the American Academy of Arts and Sciences, 19 (1883-1884) 353-431, 433-466. Developed by (the discoverer
of X-rays): W. K. Röntgen, Ueber die constitution des
flüssigen wassers, Annalen der Physik, 45 (1892) 91-97. [Back]
H. M. Chadwell, The molecular structure
of water, Chemical Reviews, 4 (1927)
357-398. [Back]
(a) J. D. Bernal and R. H. Fowler, A theory
of water and ionic solution, with particular reference to
hydrogen and hydroxyl ions. Journal of Chemical Physics,1 (1933) 515-548; (b) J. A. Pople, Molecular association in liquids. II. A theory of the structure of water, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 205 (1081) (1951) 163-178. [Back, 2]
(a) O. Ya. Samoilov, Zh. Fiz. Khim.20 (1946) 1411. (b) M. D. Danford and H. A.
Levy, The structure of liquid water at room temperature, Journal of the American Chemical Society, 84 (1962) 3965-3966; (c) A. H. Narten and H. A. Levy, Observed diffraction pattern and proposed models of liquid water, Science, 165 (1969) 447-454; B. Kamb, Structure of water, Science, 167 (1970) 1520-1521; A. H. Narten and H. A. Levy, Science, 167 (1970) 1521; (d) A. Eucken, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische Klasse, (1946) 38; (e) L. Hall, The Origin of Ultrasonic Absorption in Water, Physical Review,. 73 (1948) 775-781; (f) W. Bousfield and T. Lowry. The electrical conductivity and other properties of sodium hydroxide in aqueous solutions as elucidating the mechanism of conduction. Philosophical Transactions of the Royal Society, 204 (1905) 253-322; (g) G. Nemethy and H. A. Scheraga, Structure of water and hydrophobic bonding in proteins, A model for the thermodynamic properties of liquid water, Journal of Chemical Physics, 36 (1962) 3382-3400; (g) P. A. Guye, W. R. Bousfield, T. M. Lowry, W. Sutherland, W. Nernst, H. B. Baker, V. H. Veley, F. P. Sexton, W. Ramsay, G. Senter, W. P. Dreaper, and J. Walker, The constitution of water, Transactions of the Faraday Society, 6 (1910) 71-123; (h) G. Wada, A simplified model for the structure of water,Bulletin of the Chemical Society of Japan, 34 (1961) 955-962; (i) C. M. Davis, Jr. and I. Jarzynski, Structural relaxation in water, Advances in Molecular Relaxation Processes, 1 (1967-68) 155-199; (j) H. S. Frank, The structure of ordinary water, Science, 169 (1970) 635-641;
(k) H. E. Armstrong, The origin of the osmotic effect, Proceedings of the Royal Society, London, 78 (1906) 264-271. (l) E. Rapoport, Model for melting curve maxima at high pressure, Journal of Chemical Physics, 46 (1967) 2891-2895. [Back]
S. Aasland and P. F. McMillan, Density-driven
liquid-liquid phase-separation in the system Al2O3-Y2O3, Nature, 369 (1994): 633-636. [Back]
G. C Vezzoli, F. Dachille and R. Roy,
High-pressure studies of polymerization in sulfur, Journal of
Polymer Science, A-17 (1969) 1557-1566.
[Back]
Y. Katayama, Y. Inamura, T. Mizutani,
M. Yamakata, W. Utsumi and O. Shimomura, Macroscopic separation
of dense fluid phase and liquid phase of phosphorus, Science, 306 (2004) 848-851. [Back]
J. P. K. Doye, A. A. Louis and M. Vendruscolo,
Inhibition of protein crystallization by evolutionary negative
design, Physical Biology, 1 (2004) P9-P13.
[Back]
R. Gruber, S. Axmann and M. H. Schoenberg,
The influence of oxygenated water on the immune status,
liver enzymes, and the generation of oxygen radicals; a
prospective, randomised, blinded clinical study, Clin.
Nutr. 24 (2005) 407-414. [Back]
K. V. Zubow, A. V. Zubow and V. A.
Subow, Cluster structure of liquid alcohols, water and n-hexane, Journal of Applied Spectroscopy, 72 (2005)
300-307 (in Russian). [Back]
C.-C. Wu, C.-K. Lin, H.-C. Chang, J.-C.
Jiang, J.-L. Kuo and M. L. Klein, Protonated clathrate cages
enclosing neutral water molecules: H+(H2O)21 and H+(H2O)28, Journal of Chem.
Phys.122 (2005) 074315. [Back]
(a) C. Vega, E. Sanz and J. L. F. Abascal,
The melting temperature of the most common models of water, Journal of Chemical Physics,122 (2005) 114507;
(b) C. Vega, J. L. F. Abascal, E. Sanz, L. G. MacDowell
and C. McBride, Can simple models describe the phase diagram
of water? Journal of Physics: Condensed Matter, 17 (2005) S3283-S3288; (c) R. G. Fernández, J. L. F. Abascal and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, Journal of Chemical Physics,124 (2006) 144506. [Back] [Back to Top ]
T. Takamuku, K. Saisho, S. Nozawa and
T. Yamaguchi, X-ray diffraction studies on methanol-water,
ethanol-water, and 2-propanol-water mixtures at low temperatures, Journal of Molecular Liquids, 119 (2005) 133-
146. [Back]
Y. F. Yano, Correlation between surface
and bulk structures of alcohol-water mixtures, Journal of Colloid
Interface Science, 284 (2005) 255-259.
[Back]
F. Martin and H. Zipse, Charge distribution
in the water molecule - A comparison of methods, Journal of
Computational Chemistry,26 (2005) 97-105. [Back]
A. J. Dingley and S.Grzesiek, Direct
observation of hydrogen bonds in nucleic acid base pairs
by internucleotide 2JNN couplings, Journal of the American Chemical Society, 120 (1998) 8293-8297.
[Back]
F. Cordier and S. Grzesiek, Direct observation
of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings, Journal of the American Chemical Society, 121 (1999) 1601-1602. [Back]
V. Mäemets and I. Koppel, Effect
of ions on the 17O and 1H NMR chemical
shifts of water, Journal of the Chemical Society, Faraday Transactions,94 (1998) 3261-3269. R. Li, Z. Jiang, H. Yang and Y. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster, Journal of Molecular Liquids, 126 (2006) 14-18. [Back, 2]
N. Nestle, T. Baumann and R. Niessner,
Oxygen determination in oxygen-supersaturated drinking waters
by NMR relaxometry, Water Research, 37 (2003) 3361-3366. [Back]
T. Tsukahara, M. Harada, H. Tomiyasu
and Y. Ikeda, 17O Chemical shift and spin-lattice
relaxation measurements of water in liquid and supercritical
states by using high-resolution multinuclear NMR, Journal of
Supercritical Fluids, 26 (2003) 73-82.
[Back]
G. Otting, NMR studies of water bound
to biological molecules, Progr. Nucl. Magn. Research Spectr.31 (1997) 259-285. [Back]
A. Oleinikova, P. Sasisanker and H.
Weingärtner, What can really be learned from dielectric
spectroscopy of protein solutions? A case study of ribonuclease
A, Journal of Chemical Physics,B 108 (2004)
8467-8474. [Back]
G. E. Walrafen, Raman and infrared spectral
investigations of water structure, in Water A Comprehensive
Treatise, Vol. 1 Ed. F. Franks, (Plenum Press, New
York, 1972) pp. 151-214. [Back, 2]
M. Papageorgiou, N. Lakhdara, A. Lazaridou,
C. C. Biliaderis and M. S. Izydorczyk, Water extractable
(13,14)-β-D-glucans
from barley and oats: An intervarietal study on their structural
features and rheological behaviour, Journal of Cereal Science, 42 (2005) 213-224. [Back]
M. J. Blandamer, J. B. F. N. Engberts,
P. T. Gleeson and J. C. R. Reis, Activity of water in aqueous
systems; A frequently neglected property, Chemical Society
Reviews, 34 (2005) 440-458. [Back]
(a) W. M. Latimer and W. H. Rodebush, Polarity
and ionization from the standpoint of the Lewis theory of
valence, Journal of the American Chemical Society, 42 (1920) 1419-1433; (b) A. Werner, Über Haupt- und Nebenvalenzen und die Constitution der Ammoniumverbindungen, Justig Liebigs Annalen der Chemie, 322 (1902) 261-296. [Back]
H. E. Stanley, S V. Buldyrev, G. Franzese,
N. Giovambattista and F. W. Starr, Static and dynamic heterogeneitities
in water, Philoshical Transactions of the Royal Society A, 363 (2005) 509-523. [Back]
A. Almond, Towards understanding the
interaction between oligosaccharides and water molecules, Carbohydate Research, 340 (2005) 907-920.
[Back]
(a) M. M. Koza, H. Schober, H. E. Fischer,
T. Hansen and F. Fujara, Kinetics of the high- to low-density
amorphous water transition, Journal of Physics: Condensed Matter, 15 (2003) 321-332. (b) M. M. Koza, B. Geil,
K. Winkel, C. Köhler, F. Czeschka, M. Scheuermann,
H. Schober, and T. Hansen, Nature, of amorphous polymorphism
of water, Physical Review Letters,94 (2005) 125506. [Back]
S. Knez and C. Pohar, The magnetic field
influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions, Journal of Colloid
Interface Science, 281 (2005) 377-388.
[Back]
Smithsonian Physical Tables, 9th Ed. (Knovel, New York, 2003). [Back]
R. Moreh, R. C. Block, Y. Danon, and
M. Neumann, Search for anomalous scattering of keV neutrons
from H2O-D2O mixtures, Physical Review
Letters, 94 (2005) 185301. [Back]
S. Arai, T. Chatake, T. Ohhara, K. Kurihara,
I. Tanaka, N. Suzuki, Z. Fujimoto, H. Mizuno, and N. Niimura,
Complicated water orientations in the minor groove of the
B-DNA decamer d(CCATTAATGG)2 observed by neutron
diffraction measurements, Nucleic Acids Research, 33 (2005) 3017-3024. [Back]
H. Fukazawa, S. Mae, S. Ikeda and O.
Watanabe, Proton ordering in Antarctic ice observed by Raman
and neutron scattering, Chemical Physics Letters, 294 (1998) 554-558; but a more-recent study on a different, younger, ice sample failed to show any proton ordering [1820]. [Back]
Y. I. Cho, J. Lane and W. Kim, Pulsed-power
treatment for physical water treatment, International Communications in
Heat and Mass Transfer, 32 (2005) 861-871.
[Back]
(a) P. Vallée, J. Lafait, L.
Legrand, P. Mentré, M-O. Monod and Y. Thomas, Effects
of pulsed low-frequency electromagnetic fields on water
characterized by light scattering techniques: Role of bubbles, Langmuir, 21 (2005) 2293-2299.
(b) P. Vallée, J. Lafait, P. Mentré, M-O.
Monod and Y. Thomas, Effects of pulsed low-frequency electromagnetic
fields on water using photoluminescence spectroscopy: Role
of bubble/water interface, Journal of Chemical Physics, 122 (2005) 114513. [Back, 2] [Back to Top ]