Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3101- 3200

 

  1. H. J. Bixler, The carrageenan controversy, Journal of Applied Phycology, 29 (2017) 2201-2207; J. K. Tobacman, Reply to comments regarding "The Carrageenan Controversy", Journal of Applied Phycology, 29 (2017) 2209-2211; S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes, Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food & Function, 9 (2018) 1344-1352; M. L. Weiner and J. M. McKim Jr, Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by S. David, C. S. Levi, L. Fahoum, Y. Ungar, E. G. Meyron-Holtz, A. Shpigelman and U. Lesmes, Food Funct., 2018, 9, 1344–1352, Food & Function, 10 (2019) 1760-1762; S. David, L. Fahoum, G. Rozen, R. Shaoul, A. Shpigelman, E. G. Meyron-Holtz and U. Lesmes, , Reply to the Comment on “Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods?” by M. Weiner and J. McKim, Food Funct., 2019, 10: DOI: 10.1039/C8FO01282B, Food & Function, 10 (2019) 1763-1766. [Back]
  2. K. Tomanová, M. Precek, V. Múcka, L. Vysıín, L. Juhab and V. Cuba, At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation, Physical Chemistry Chemical Physics, 19 (2017) 29402-29408. [Back, 2]
  3. L. Liang, J.-C. Li, L.Zhang, Z. Zhang, J.-W.Shen, L. Li and J. Wu, Computer simulation of water desalination through boron nitride nanotubes, Physical Chemistry Chemical Physics, 19 (2017) 30031-30038. [Back]
  4. Y. N. Kalugina, A. Faure, A. van der Avoird, K. Walker and F. Lique, Interaction of H2O with CO: potential energy surface, bound states and scattering calculations, Physical Chemistry Chemical Physics, 20 (2018) 5469-5477. [Back]
  5. F. Fillaux, The quantum phase-transitions of water, EPL (Europhysics Letters), 119 (2017) 40008. [Back]
  6. A. Wirgin, On the velocity of sound in water: theoretical aspects of Colladon’s nineteenth century experiments, arXiv:1710.03777v1 [physics.hist-ph] 10 Oct 2017. [Back]
  7. J. Kolafa, Residual entropy of ices and clathrates from Monte Carlo simulation, The Journal of Chemical Physics, 140 (2014) 204507. [Back]
  8. D. E. Garrick, J. W. Hall, A. Dobson, R. Damania, R. Q. Grafton, R. Hope, C. Hepburn, R. Bark, F. Boltz, L. De Stefano, E. O'Donnell, N. Matthews and A. Money, Valuing water for sustainable development, Science, 358 (2017) 1003-1005. [Back]
  9. C. Corsaro, F. Mallamace, S. Vasi, S.-H. Chen, H. E. Stanley and D. Mallamace, Contrasting microscopic interactions determine the properties of water/methanol solutions, Frontiers of Physics, 13 (2018) 138201. [Back]
  10. M. De Marzio, G. Camisasca, M. Rovere and P. Gallo, Fragile to strong crossover and Widom line in supercooled water: A comparative study, Frontiers of Physics, 13 (2018) 136103. [Back]
  11. P. H. Handle, T. Loerting and F. Sciortino, Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land, Proceedings of the National Academy of Sciences, 114 (2017) 13336-13344. [Back, 2]
  12. A. Lasanta, F. V. Reyes, A. Prados and A. Santos, When the hotter cools more quickly: Mpemba effect in granular fluids, Physical Review Letters, 119 (2016) 148001; arXiv:1611.04948v1 [cond-mat.soft] 15 Nov 2016; K. Krämer, Past might explain Mpemba effect, Chemistry World, 14 (2017) 43; Z. Lu and O. Raz, Anomalous cooling and heating: the Mpemba effect and its inverse, Proceedings of the National Academy of Sciences, 114 (2017) 5083-5088; arXiv:1609.05271v1 [cond-mat.stat-mech] 17 Sep 2016. [Back, 2]
  13. P A. Greaney, G. Lani, G. Cicero and J. C Grossman. Mpemba like behavior in carbon nanotube resonators, Metallurgical and Materials Transactions A, 42 (2011) 3907-3912. [Back]
  14. L. Liu, S. Tan, T. Horikawa, D. D. Do, D. Nicholson and J. Liu, Water adsorption on carbon - A review, Advances in Colloid and Interface Science, 250 (2017) 64-78. [Back]
  15. Y. Litman, D. Donadio, M. Ceriotti, and M. Rossi, Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature, The Journal of Chemical Physics, 148, 102320 (2018); arXiv:1710.04876v1 [physics.chem-ph] 13 Oct 2017. [Back]
  16. S. Mondal, T. Goswami, G. Jana, A. Misra and P. K. Chattaraj, A possible reason behind the initial formation of pentagonal dodecahedron cavities in sI-methane hydrate nucleation: A DFT study, Chemical Physics Letters, 691 (2018) 415-420. [Back]
  17. P. A. Magallanes-Cruz, P. C. Flores-Silva and L. A. Bello-Perez, Starch structure influencesits digestibility: A review, Journal of Food Science, 82 (2017) 2016-2023. [Back]
  18. I. U. Vakarelski, E. Klaseboer, A. Jetly, M. M. Mansoor, A. A. Aguirre-Pablo, D. Y. C. Chan and S. T. Thoroddsen, Self determined shapes and velocities of giant near-zero drag gas cavities, Science Advances, 3 (2017) e1701558. [Back]
  19. H. A. Hushvaktov, F. H. Tukhvatullin, A. Jumabaev, U. N. Tashkenbaev, A. A. Absanov, B. G. Hudoyberdiev and B. Kuyliev, Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol, Journal of Molecular Structure, 1131 (2017) 25-29. [Back]
  20. T. Encrenaz, Water in the Solar System, The Annual Review of Astronomy and Astrophysics, 46 (2008) 57-87; J. F. Bell III, Water on Planets, Highlights of Astronomy, 15 XXVIIth IAU General Assembly, August 2009, ed. I. F. Corbett, ed. International Astronomical Union 2010, doi:10.1017/S1743921310008161. [Back]
  21. H. Tran, A. V. Cunha, J. J. Shephard, A. Shalit, P. Hamm, T. L. C. Jansen and C. G. Salzmann, 2D IR spectroscopy of high-pressure phases of ice, The Journal of Chemical Physics, 147 (2017) 144501. [Back, 2, 3, 4]
  22. T. Morawietz, O. Marsalek, S. R. Pattenaude, L. M. Streacker, D. Ben-Amotz and T. E. Markland, The interplay of structure and dynamics in the Raman spectrum of liquid water over the full frequency and temperature range, arXiv:1711.08563v1 [physics.chem-ph] 23 Nov 2017. [Back]
  23. C. Marcolli, Ice nucleation triggered by negative pressure, Scientific Reports, 7 (2017) 16634. [Back, 2]
  24. K. Fleming, P. Johnston, D. Zwartz, Y. Yokoyama, K. Lambeck and J. Chappell, Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites, Earth and Planetary Science Letters, 163 (1998) 327-342. [Back]
  25. D. Niether, S. Di Lecce, F. Bresme and S. Wiegand, Unravelling the hydrophobicity of urea in water using thermodiffusion: implications for protein denaturation, Physical Chemistry Chemical Physics, 20 (2018) 1012-1020. [Back]  [Back to Top to top of page]
  26. J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, B. Otto-Bliesner, A. Schmittner and E. Bard, Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation Nature, 484 (2012) 49-55. [Back]
  27. R. Case, H. Schollmeyer, P. Kohl, E. B. Sirota, R. Pynn, K. E. Ewert, C. R. Safiny and Y Li, Hydration forces between aligned DNA helices undergoing B to A conformational change: In-situ X-ray fiber diffraction studies in a humidity and temperature controlled environment, Journal of Structural Biology, 200 (2017) 283-292. [Back]
  28. A. Gupta, H. B. Eral, T. A. Hatton and P. S. Doyle, Nanoemulsions: formation, properties and applications, Soft Matter, 12 (2016) 2826-2841. [Back]
  29. (a) J. K. Hensel, A. P. Carpenter, R. K. Ciszewski, B. K. Schabes, C. T. Kittredge, F. G. Moore and G. L. Richmond, Molecular characterization of water and surfactant AOT at nanoemulsion surfaces, Proceedings of the National Academy of Sciences, 114 (2017) 13351-1335; (b) J. Penfold, S. Nave and J. Eastoe, What Is So Special about Aerosol-OT? 1. Aqueous Systems, Langmuir, 16 (2000) 8733-8740. [Back]
  30. E. Xi, V. Venkateshwaran, L. Li, N. Rego, A. J. Patel and S. Garde, Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context, Proceedings of the National Academy of Sciences, 114 (2017) 13345-13350. [Back]
  31. A. Mitchinson, Physical chemistry: Ice niceties Nature, 551 (2017) 178; L. Lupi, A. Hudait, B. Peters, M. Grünwald, R. G. Mullen, A. H. Nguyen and V. Molinero, Role of stacking disorder in ice nucleation, Nature, 551 (2017) 218-222; F. Paesani, Making Ice from stacking-disordered crystallites, Chem, 3 (2017) 917-927, doi.: 10.1016/j.chempr.2017.12.002. [Back]
  32. D. Kwon, Life on Mars, The Scientist, Dec. (2017) 36-43. [Back]
  33. S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Gotz, and F. Paesani, On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice, The Journal of Chemical Physics, 145 (2016) 194504; arXiv:1609.02884v1 [physics.chem-ph] 9 Sep 2016; T. E. Gartner III, K. M. Hunter, E. Lambros, A. Caruso, M. Riera, G. R. Medders, A. Z. Panagiotopoulos, P. G. Debenedetti and F. Paesani, Anomalies and local structure of liquid water from boiling to the supercooled regime as predicted by the many-body MB-pol model, Journal of Physical Chemistry Letters, 13 (2022) 3652-3658. [Back]
  34. (a) K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama and A. Nilsson, Maxima in the thermodynamic response and correlation functions of deeply supercooled water, Science, 358 (2017) 1589-1593; (b) P. Gallo and H. E. Stanley, Supercooled water reveals its secrets, Science, 358 (2017) 1543-1544; (c) F. Caupin, V. Holten, C. Qiu, E. Guillerm, M. Wilke, M. Frenz, J. Teixeira and A. K. Soper, Comment on “Maxima in the thermodynamic response and correlation functions of deeply supercooled water”, Science, 360 (2018) eaat1634; (d) K. H. Kim, A. Späh, H. Pathak, F. Perakis, D. Mariedahl, K. Amann-Winkel, J. A. Sellberg, J. H. Lee, S. Kim, J. Park, K. H. Nam, T. Katayama and A. Nilsson, Response to Comment on “Maxima in the thermodynamic response and correlation functions of deeply supercooled water”, Science, 360 (2018) eaat1729; (e) K. Sanderson, H2Oh!, New Scientist. 238 (2018) 26-29; Cite as: J. Chem. Phys. 150, 234503 (2019); (f) A. K. Soper, Is water one liquid or two?, Journal of Chemical Physics, 150 (2019) 234503. [Back, 2, 3, 4, 5]
  35. C. Fang and R. Qiao, Surface hydration drives rapid water imbibition into strongly hydrophilic nanopores, Physical Chemistry Chemical Physics, 19 (2017) 20506-20512. [Back]
  36. F. Comert, F. Azarikia and P. L. Dubin, Polysaccharide zeta-potentials and protein-affinity, Physical Chemistry Chemical Physics, 19 (2017) 21090-21094. [Back]
  37. A. Stamma, A. Svendsen, J. Skjold-Jørgensen, T. Vissing, I. Berts and T. Nylander, The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations, Chemistry and Physics of Lipids, 211 (2018) 37-43. [Back]
  38. J. Guo, X.-Z. Li, J. Peng, E.-G. Wang and Y. Jiang, Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory, Progress in Surface Science, 92 (2017) 203-239. [Back, 2]
  39. B. Stevens, H.Brogniez, C. Kiemle, J.-L. Lacour, C. Crevoisier and J. Kiliani, Structure and dynamical influence of water vapor in the lower tropical troposphere, Surveys in Geophysics, 38 (2017) 1371-1397. [Back]
  40. J. Stone, Natural bond orbitals and the nature of the hydrogen bond, Journal of Physical Chemistry A, 121 (2017) 1531-1534; A. Extance, Do hydrogen bonds have covalent character? Chemistry World, 14(4) (2017) 39; F. Weinhold and E. D Glendening, Comment on "Natural Bond Orbitals and the Nature of the Hydrogen Bond",Journal of Physical Chemistry A, 122 (2018) 724–732; A. J. Stone and K. Szalewicz, Reply to “Comment on ‘Natural Bond Orbitals and the Nature of the Hydrogen Bond’”, Journal of Physical Chemistry A, 122 (2018) 733-736. [Back]
  41. M. Wang, Z. Wang, X. Gong and Z. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable and Sustainable Energy Reviews, 29 (2014) 573-588. [Back]
  42. J. Singh and J. B. Udgaonkar, Molecular mechanism of the misfolding and oligomerization of the Prion protein: Current understanding and its implications, Biochemistry, 54 (2015) 4431-4442; P. K. Baral, J. Yin, A. Aguzzi and M. N. G. James, Transition of the prion protein from a structured cellular form (PrP C ) to the infectious scrapie agent (PrP Sc ), Protein Science, 28 (2019) 2055-2063. [Back]
  43. Y. Koga, F. Sebe and K. Nishikawa, Effects of tetramethyl- and tetraethylammonium chloride on H2O: Calorimetric and near-infrared spectroscopic study, Journal of Physical Chemistry B, 117 (2013) 877-883; K. Yonenaga, T. Morita, K. Nishikawa and Y. Koga, Effects of ionic liquid constituent cations, tetraalkylammoniums, on water studied by means of the “1-propanol probing methodology”, Journal of Molecular Liquids, 252 (2018) 58-61. [Back]
  44. K. Sotthewes, P. Bampoulis, H. J. W. Zandvliet, D. Lohse and B. Poelsema, Pressure-induced melting of confined ice, ACS Nano, 11 (2017) 12723-12731. [Back]
  45. S. A. Skopinov, M. V. Bodrova, M. P. R. Jablon, G. H. Pollack and F. A. Blyakhman, ‘‘Exclusion Zone’’ formation in mixtures of ethanol and water, Journal of Solution Chemistry, 46 (2017) 626-632. [Back]
  46. D. Breitburg, L. A. Levin, A. Oschlies, M. Grégoire, F. P. Chavez, D. J. Conley, V. Garçon, D. Gilbert, D. Gutiérrez, K. Isensee, G. S. Jacinto, K. E. Limburg, I. Montes, S. W. A. Naqvi, G. C. Pitcher, N. N. Rabalais, M. R. Roman, K. A. Rose, B. A. Seibel, M. Telszewski, M. Yasuhara and J. Zhang, Declining oxygen in the global ocean and coastal waters, Science, 359 (2018) eaam7240. [Back]
  47. A. S. Tascini, M. G. Noro, R. Chen, J. M. Seddon and F. Bresme, Understanding the interactions between sebum
    triglycerides and water: a molecular dynamics simulation study, Physical Chemistry Chemical Physics, 20 (2018) 1848-1860 . [Back]
  48. Z. Xu, W. Zhao, Z. Wang, Y. Yangce and N. Sahai, Structure analysis of collagen fibril at atomic-level resolution and its implications for intra-fibrillar transport in bone biomineralization, Physical Chemistry Chemical Physics, 20 (2018) 1513-1523 . [Back]
  49. S. Strazdaite, J. Versluis, N. Ottosson and H. J. Bakker, Orientation of methylguanidinium ions at the water−air interface, Journal of Physical Chemistry C, 121 (2017) 23398-23405. [Back]
  50. M. Razmkhah, F. Moosavi, M. T. H. Mosavian and A.Ahmadpour, Does electric or magnetic field affect reverse osmosis desalination? Desalination, 432 (2018) 55-63. [Back] [Back to Top to top of page]
  51. E. G. Tarakanova and G. V. Yukhnevich, Composition and structure of hydrates of CH3COOH molecules and CH3CO2 anions in aqueous solutions, Journal of Structural Chemistry, 58 (2017) 1357-1367. [Back]
  52. B. Pamuk, P. B. Allen and M.-V. Fernández-Serra, Insights into the structure of liquid water from nuclear quantum effects on density and compressibility of ice polymorphs, arXiv:1801.02998v1 [cond-mat.mtrl-sci] 9 Jan 2018. [Back, 2]
  53. H. Dureckova, T. K. Woo, K. A. Udachin, J. A. Ripmeester and S. Alavi, The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates, Faraday Discussions, 203 (2017) 61-77. [Back]
  54. D. Hayakawa, Y. Nishiyama, K. Mazeau and K. Ueda, Evaluation of hydrogen bond networks in cellulose Iβ and II crystals using density functional theory and CareParrinello molecular dynamics, Carbohydrate Research, 449 (2017) 103-113. [Back]
  55. K. Shiraga, A. Adachi and Y. Ogawa, Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis, Chemical Physics Letters, 678 (2017) 59-64. [Back]
  56. C. Lécuyer, A. Royer, F. Fourel, M. Seris, L. Simon and F. Robert, D/H fractionation during the sublimation of water ice, Icarus, 285 (2017) 1-7; J. Mortimer, C., Lécuyer, F., Fourel and J. Carpenter, D/H fractionation
    during sublimation of water ice at low temperatures into a vacuum, Planetary and Space Science, 158 (2018) 25-33. [Back]
  57. I. Bakó, J. Oláh, A. Lábas, S. Bálint, L. Pusztai and M. C. Bellissent Funel, Water-formamide mixtures: Topology of the hydrogen-bonded network, Journal of Molecular Liquids, 228 (2017) 25-31. [Back]
  58. V. I. Solomatin, Structural mechanisms of ice deformation, Doklady Earth Sciences, 477 (2017) 1426-1429, DOI: 10.1134/S1028334X17120091; Original Russian, Doklady Akademii Nauk, 477 (2017) 475-479. [Back]
  59. C. M. Dundas, A. M. Bramson, L. Ojha, J. Wray, M. T. Mellon, S. Byrne, A. S. McEwen, N. E. Putzig, D. Viola, S. Sutton, E. Clark and J. W. Holt, Exposed subsurface ice sheets in the Martian mid-latitudes, Science359 (2018) 199-201. [Back]
  60. J. M. Rodgers and T. Ichiye, Multipole moments of water molecules and the aqueous solvation of monovalent ions, Journal of Molecular Liquids, 228 (2017) 54-62. [Back]
  61. T. Fujita, The status and future of fine bubble generation, measurements and applications, 7th International Symposium of Fine Bubble Technology, Sydney, Australia (2016). [Back]
  62. C. M Tonauer, M. Seidl-Nigsch and T. Loerting, High-density amorphous ice: nucleation of nanosized low-density amorphous ice, Journal of Physics: Condensed Matter, 30 (2018) 034002. [Back, 2, 3]
  63. A. Roy, 1, M. A. Hickner, H.-S. Lee, T. Glass, M. Paul, A. Badami, J. S. Riffle and J. E. McGrath, States of water in proton exchange membranes: Part A - Influence of chemical structure and composition, Polymer, 111 (2017) 297-306. [Back]
  64. V. V. Goncharuk, A. V. Syroeshkin, T. V. Pleteneva, E. V. Uspenskaya, O. V. Levitskaya and V. A. Tverdislov, On the possibility of chiral structuredensity submillimeter inhomogeneities existing in water, Journal of Water Chemistry and Technology, 39 (2017) 319-324, DOI: 0.3103/S1063455X17060029, Original Russian, Khimiya i Tekhnologiya Vody, 39 (2017) 572-583. [Back, 2]
  65. J. C. del Valle, C. Aragó, M. I. Marqués and J. A. Gonzalo, Paraelectric response of water in the range 0–100°C, Ferroelectrics, 466 (2014) 166-180. [Back]
  66. R. B. Fenwick, D. Oyen, H. J. Dyson and P. E. Wright, Slow dynamics of tryptophan-water networks in proteins, Journal of the American Chemical Society, 140 (2018) 675-682. [Back]
  67. P. M. Cox, C. Huntingford and M. S. Williamson, Emergent constraint on equilibrium climate sensitivity from global temperature variability, Nature, 553 (2018) 319-322. [Back]
  68. N. A. Mishchuk and V. V. Goncharuk, On the nature of physical properties of water, Journal of Water Chemistry and Technology, 39 (2017) 125-131, Original Russian, Khimiya i Tekhnologiya Vody, 39 (2017) 227-240. [Back]
  69. M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions Mining Science and Technology, 20 (2010) 0001-0019; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part II): fundamental study and theoretical analysis Mining Science and Technology, 20 (2010) 0159-0177; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part III): specially designed laboratory scale column flotation of phosphate, Mining Science and Technology, 20 (2010) 0317-0338; M. Fan, D. Tao, R. Honaker and Z. Luo, Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal, Mining Science and Technology, 20 (2010) 0641-0671. [Back]
  70. P. Knüpfer, L. Ditscherlein and U. A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders
    Colloids and Surfaces A, 530 (2017) 117-123. [Back]
  71. H. Oliveira, A. Azevedo and J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube,
    Minerals Engineering, 116 (2018) 32-34. [Back]
  72. L. del Rosso, M. Celli, D. Colognesi, S. Rudi, N. J. English, C. J. Burnham and L. Ulivi, Dynamics of hydrogen guests in ice XVII nanopores, Phyical Review Materials, 1 (2017) 065602,

    DOI: 10.1103/PhysRevMaterials.1.065602, arXiv:1706.09350v2 [cond-mat.other] 17 Nov 2017. [Back]

  73. S. Shimizu and N.Matubayasi, Hydrotropy and scattering: pre-ouzo as an extended near-spinodal region, Physical Chemistry Chemical Physics, 19 (2017) 26734-26742. [Back]
  74. D. Munoz-Santiburcio and D. Marx, Chemistry in nanoconfined water, Chemical Science, 8 (2017) 3444-3452. [Back]
  75. M. Feig, I. Yu, P. Wang, G. Nawrocki and Y. Sugita, Crowding in cellular environments at an atomistic level from
    computer simulations, Journal of Physical Chemistry B, 121 (2017 ) 8009-8025. [Back] [Back to Top to top of page]
  76. P. W. Rosenkranz, Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science, 33 (1998) 919-928; G. E. Nedoluha, M. Kiefer, S. Lossow, R. M.Gomez, N. Kämpfer, M. Lainer, P. Forkman, O. M. Christensen, J. J. Oh, P. Hartogh, J. Anderson, K. Bramstedt, B. M. Dinelli, M. Garcia-Comas, M. Hervig, D. Murtagh, P. Raspollini, W. G. Read, K. Rosenlof, G. P. Stiller and K. A. Walker, The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements, Atmospheric Chemistry and Physics, 17 (2017) 14543-14558. [Back]
  77. K. Sverdrup, S.-J. Kimmerle and P. Berg, Computational investigation of the stability and dissolution of nanobubbles, Applied Mathematical Modelling, 49 (2017) 199-219. [Back]
  78. T. Uchida, S. Oshita, M.Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take and K. Mitsuda, Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater, Nanoscale Research Letters, 6 (2011) 295; T. Uchida, H. Nishikawa, N. Sakurai , M. Asano and N. Noda, Ultra-fine bubble distributions in a plant factory observed by transmission electron microscope with a freeze-fracture replica technique, Nanomaterials , 8 (2018) 152; doi:10.3390/nano8030152. [Back]
  79. T. Tuziuti, K. Yasui and W. Kanematsu, Influence of increase in static pressure on bulk nanobubbles, Ultrasonics - Sonochemistry, 38 (2017) 347-350. [Back]
  80. R. Etchepare, A. Azevedo, S. Calgaroto and J. Rubio, Removal of ferric hydroxide by flotation with micro and nanobubbles, Separation and Purification Technology, 184 (2017) 347-353. [Back]
  81. V. Mazzini and V. S.J. Craig, Specific-ion effects in non-aqueous systems, Current Opinion in Colloid & Interface Science, 23 (2016) 82-93. [Back]
  82. Y. Ye, N. Ning, M. Tian, L. Zhang and J. Mi, Thermodynamic and dynamical heterogeneities during glass transition of water, Journal of Molecular Liquids, 253 (2018) 91-95. [Back]
  83. B. Wu, X. Wang, J. Yang, Z. Hua, K. Tian, R. Kou, J. Zhang, S. Ye, Y. Luo, V. S. J. Craig, G. Zhang and G. Liu, Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive, Science Advances, 2 (2016) e1600579. [Back]
  84. R. T. Hall and J. M. Dowling, Pure rotational spectrum of water vapor. The Journal of Chemical Physics, 47 (1967) 2454-2461; R. T. Hall and J. M. Dowling, Erratum: Pure rotational spectrum of water vapor, The Journal of Chemical Physics, 54 (1971) 4968. [Back]
  85. P. Bruździak, A. Panuszko, E. Kaczkowska, B. Piotrowski, A. Daghir, S. Demkowicz and J. Stangret, Taurine as a water structure breaker and protein stabilizer, Amino Acids, 50 (2018) 125-140. [Back]
  86. C. Y. Son, A. Yethiraj, and Q. Cui, Cavity hydration dynamics in cytochrome c oxidase and functional implications, Proceedings of the National Academy of Sciences, 114 (2017) E8830-E8836. [Back]
  87. T. H. van der Loop, N. Ottosson, T. Vad, W. F. C. Sager, H. J. Bakker and S. Woutersen, Communication: Slow proton-charge diffusion in nanoconfined water, The Journal of Chemical Physics, 146 (2017) 131101. [Back]
  88. M. Yang, Z. R. Chong, J. Zheng, Y. Song and P. Linga, Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates, Renewable and Sustainable Energy Reviews, 74 (2017) 1346-1360. [Back]
  89. K. Wynne, The mayonnaise effect, Journal of Physical Chemistry Letters, 8 (2017) 6189-6192. [Back]
  90. W. Kaminski, J. Marszalek and E. Tomczak, Water desalination by pervaporation – Comparison of energy consumption, Desalination, 433 (2018) 89-93. [Back]
  91. S. J. Buwalda, T. Vermonden and W. E. Hennink, Hydrogels for therapeutic delivery: Current developments and future directions, Biomacromolecules, 18 (2017) 316-330. [Back]
  92. T. Kawakami, M. Nakada, H. Shimura, K. Okada and M. Kimura, Hydration structure of reverse osmosis membranes studied via neutron scattering and atomistic molecular simulation, Polymer Journal, 50 (2018) 327-336. [Back]
  93. Q. Zhang, T. Wu, C. Chen, S. Mukamel and W. Zhuang, Molecular mechanism of water reorientational slowing down in concentrated ionic solutions, Proceedings of the National Academy of Sciences, 114 (2017) 10023-10028. [Back]
  94. M. E. Mazurov and V. A. Tverdislov, The mechanism of self-organization in a surface water microlayer utilizing thermocapillary convection, Biophysics, 61 (2016) 833-837; Original Russian, M. E. Mazurov, V. A. Tverdislov, Biofizika, 61 (2016) 1068-1072. [Back]
  95. E. N. Kozlovskaya, G. A. Pitsevich, A. E. Malevich, O .P. Doroshenko, V. E. Pogorelov, I. Yu. Doroshenko, V. Balevicius, V. Sablinskas and A. A. Kamnev, Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600–2300cm−1. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 196 (2018) 406-412. [Back]
  96. S. Calgaroto, A. Azevedo and J. Rubio, Flotation of quartz particles assisted by nanobubbles, International Journal of Mineral Processing, 137 (2015) 64-70; A. F. Rosa and J. Rubio, On the role of nanobubbles in particle- bubble adhesion for the flotation of quartz and apatitic minerals, Minerals Engineering, 127 (2018) 178-184. [Back]
  97. Z. Slanina, F. Uhlík, S. Nagase, T. Akasaka, X. Lu and L. Adamowicz, Cyclic water-trimer encapsulation into D2 (22)- C84 fullerene, Chemical Physics Letters, 695 (2018) 245-248. [Back]
  98. F. Librizzi, R. Carrotta, J. Peters and A. Cupane, The effects of pressure on the energy landscape of proteins, Scientific Reports, 8 (2018) 2037. [Back]
  99. M. Millot, S. Hamel, J. R. Rygg, P. M. Celliers, G. W. Collins, F.Coppari, D. E. Fratanduono, R. Jeanloz, D. C. Swift and J. H. Eggert, Experimental evidence for superionic water ice using shock compression, Nature Physics, 14 (2018) 297-302 (2018). [Back, 2]
  100. R. M. Tutchton and Z. Wu, Formation of spherical ice-shells inside carbon fullerenes, Physical Chemistry Chemical Physics, 19 (2017) 30726-30733. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2017 and last updated by Martin Chaplin on 26 August, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License