Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 1201 - 1300

 

  1. L. Cordone, G. Cottone and S. Giuffrida, Role of residual water hydrogen-bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity, Journal of Physics: Condensed Matter, 19 (2007) 205110. [Back]
  2. O. Andersson and A. Inaba, Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water, Physical Chemistry Chemical Physics, 7 (2005) 1441-1449; G. P. Johari and O. Andersson, Vibrational and relaxational properties of crystalline and amorphous ices,Thermochimica Acta, 461 (2007) 14-43. [Back, 2, 3]
  3. Q. Wang, L. Li, G. Chen and Y. Yang, Effects of magnetic field on the sol-gel transition of methycellulose in water, Carbohydrate Polymers 70 (2007) 345-349. [Back]
  4. A. M. Silva, J. Wang, R. N. Pierson Jr, ZM. Wang, J. Spivack, D. B. Allison, S. B. Heymsfield, L. B. Sardinha and S. Heshka, Extracellular water across the adult lifespan: reference values for adults, Physiol. Meas. 28 (2007) 489–502. [Back]
  5. (a) V. Buch, A. Milet, R. Vácha, P.l Jungwirth and J. P. Devlin, Water surface is acidic, Proceedings of the National Academy of Sciences, 104 (2007) 7342-7347. Note that the conclusions of this paper concerning neutral solutions are disputed. (b) R. Vácha, V. Buch, A. Milet, J. P. Devlin and P. Jungwirth, Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? Physical Chemistry Chemical Physics, 9 (2007) 4736-4747. (c) J. K. Beattie, Comment on Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? by R. Vácha, V. Buch, A. Milet, J. P. Devlin and P. Jungwirth, Physical Chemistry Chemical Physics, 2007, 9, 4736, Physical Chemistry Chemical Physics, 10 (2008) 330-331; (d) R. Vácha, V. Buch, A. Milet, J. P. Devlin and P. Jungwirth, Response to comment on Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? by J. K. Beattie, Physical Chemistry Chemical Physics, 10 (2008) 332-333; (e) P. B. Petersen, R. J. Saykally, Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations, Chemical Physics Letters, 458 (2008) 255-261; (f) J. K. Beattie, A. M. Djerdjev and G. G. Warr, The surface of water is basic, Faraday Discussions, 141 (2008) 31-39; (g) B. Winter, M. Faubel, R. Vácha, P. Jungwirth, Behavior of hydroxide at the water/vapor interface, Chemical Physics Letters, 474 (2009) 241-247; (h) J. K. Beattie, Comment on ‘Behaviour of Hydroxide at the Water/Vapor Interface’ [Chemical Physics Letters, 474 (2009) 241], Chemical Physics Letters, 481 (2009) 17-18; (i) B. Winter, M. Faubel, R. Vácha, P. Jungwirth, Reply to comments on frontier article “Behavior of Hydroxide at the Water/Vapor Interface”, Chemical Physics Letters, 481 (2009) 19-21; (j) A. Gray-Weale, Comment on ‘Behaviour of hydroxide at the water/vapor interface’ [Chemical Physics Letters, 474 (2009) 241], Chemical Physics Letters, 481 (2009) 22–24; (k) C.J. Mundy, I-F. W. Kuo, M. E. Tuckerman, H-S. Lee, D. J. Tobias, Hydroxide anion at the air-water interface, Chemical Physics Letters, 481 (2009) 2-8; (l) P. Creux, J. Lachaise, A. Graciaa, J. K. Beattie and A. M. Djerdjev, Strong specific hydroxide ion binding at the pristine oil/water and air/water interfaces, Journal of Physical Chemistry, 113 (2009) 14146-14150; (m) A. Gray-Weale and J. K. Beattie, An explanation for the charge on water's surface, Physical Chemistry Chemical Physics, 11 (2009) 10994-11005. [Back, 2]
  6. (a) M. F. Chaplin, The memory of water; an overview, Homeopathy, 96 (2007) 143-150; (b) P. Wilson, Comment on "The memory of water; an overview", Homeopathy, 97 (2008) 42-43. (c) M. F. Chaplin, Reply to Comment on "The memory of water; an overview", Homeopathy, 97 (2008) 43-44. (d) P. Fisher, The memory of water: a scientific heresy? Homeopathy, 96 (2007) 141-142. (e) P. Fisher, On the plausibility of Homeopathy, Homeopathy, 97 (2008) 1-2. [Back]
  7. D. J. Anick and J. A. Ives, The silica hypothesis for homeopathy: physical chemistry, Homeopathy, 96 (2007) 203-209. [Back, 2]
  8. A, Zaks and A. M. Klibanov, Enzymatic catalysis in nonaqueous solvents. J. Biol. Chem. 263 (1988) 3194-3201. [Back]
  9. J. Teixeira, Can water possibly have a memory? A sceptical view, Homeopathy, 96 (2007) 158-162. [Back]
  10. D. J. Anick, The octave potencies convention: a mathematical model of dilution and succussion, Homeopathy, 96 (2007) 202-208. [Back]
  11. Y. Thomas, The history of the memory of water, Homeopathy, 96 (2007) 151-157. (b) F. Beauvais, Memory of water and blinding, Homeopathy, 97 (2008) 41-42. [Back, 2]
  12. K. Takaizumi, A curious phenomenon in the freezing–thawing process of aqueous ethanol solution, J. Solution Chemistry, 34 (2005) 597-612. [Back]
  13. C. Nieto-Draghi, R. Hargreaves and S. P. Bates, Structure and dynamics of water in aqueous methanol, Journal of Physics: Condensed Matter, 17 (2005) S3265–S3272. [Back]
  14. G. Jákli, The H2O-D2O solvent isotope effects on the molar volumes of alkali-chloride solutions at T= (288.15, 298.15 and 308.15) K, Journal of Chemical Thermodynamics, 39 (2007) 1589-1600. [Back]
  15. M. Koizumi, H. Hirai, T. Onai, K. Inoue and M. Hirai, Collapse of the hydration shell of a protein prior to thermal unfolding, J. Appl. Cryst. 40 (2007) s175-s178. [Back]
  16. V. Kräutler, M. Müller and P. H. Hünenberger, Conformation, dynamics, solvation and relative stabilities of selected β-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field, Carbohydate Research, 342 (2007) 2097-2124. [Back]
  17. J. A. V. Butler, The energy and entropy of hydration of organic compounds. Trans. Faraday Soc. 33 (1937) 229-238. [Back]
  18. A. F. Goncharov, C. Sanloup, N. Goldman, J. C. Crowhurst, L. E. Fried, N. Guignot, M. Mezouar and Y. Meng, Probing of structure factor of water to 57 GPa and 1500 K. Mater. Research Soc. Symp. Proc. 987 (2007). [Back]
  19. N. Miura, T. Kitagawa, K.i Nishikawa, A. Moon and H. Yamada, Far infrared spectroscopy by portable synchrotron MIRRORCLE 20, Joint 30th Intl. Conf. on Infrared and Millimeter Waves & 13th Intl. Conf. on Terahertz Electronics (2005). [Back]
  20. A. K. Lyashchenko and I. M. Karataeva, Relation of water activity to the static dielectric constant of concentrated electrolyte solutions, Doklady Physical Chemistry 414 (2007) 120-122. [Back]
  21. T. Tsukamoto, Y. Ishikawa, T. Natsume, K. Dedachi and N. Kurita, A combined molecular dynamics/density-functional theoretical study on the structure and electronic properties of hydrating water molecules in the minor groove of decameric DNA duplex, Chemical Physics Letters, 441 (2007) 136-142. [Back]
  22. E. A. Kadyshevich and V. E. Ostrovskii, Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication,Thermochimica Acta, 458 (2007) 148-161. [Back]
  23. T. Liu, E. Diemann and A. Müller, Hydrophilic inorganic macro-ions in solution: Unprecedented self-ssembly emerging from historical "Blue waters", Journal of Chemical Education, 84 (2007) 526-532. [Back]
  24. P. E. Mason and J. W. Brady, “Tetrahedrality” and the relationship between collective structure and radial distribution functions in liquid water, Journal of Physical Chemistry B 111 (2007) 5669-5679. [Back, 2]
  25. R. Souda, Two liquid phases of water in the deeply supercooled region and their roles in crystallization and formation of LiCl solution, Journal of Physical Chemistry B 111 (2007) 5628-5634. [Back] [Back to Top to top of page]
  26. B. Kamb and B. L. Davis, Ice VII, the densest form of ice, Proceedings of the National Academy of Sciences, 52 (1964) 1433-1439. [Back]
  27. B. Winter, E. F. Aziz, U. Hergenhahn, M. Faubel and I. V. Hertel, Hydrogen bonds in liquid water studied by photoelectron spectroscopy, Journal of Chemical Physics,126 (2007) 124504. [Back, 2]
  28. J. L. F. Abascal and C. Vega, The melting point of hexagonal ice (Ih) is strongly dependent on the quadrupole of the water models, Physical Chemistry Chemical Physics, 9 (2007) 2775-2778. [Back]
  29. T. Corridoni, A. Sodo, F. Bruni, M-A. Ricci, M. Nardone, Probing water dynamics with OH, Chemical Physics, 336 (2007) 183-187. [Back, 2]
  30. I.Takei, Dielectric relaxation of ice samples grown from vapor-phase or liquid-phase water, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 577-584; I. Takei, Dielectric response of Ice Ih: Signals perpendicular to an electric field of 1Hz to 1MHz applied to a cube sample, Journal of the Physical Society of Japan, 87 (2018) 084707. [Back]
  31. R. J. Hill, L. J. C. Bluck and P. S. W. Davies, The hydration ability of three commercially available sports drinks and water, J. Science Med. Sport 11 (2008) 116-123. [Back]
  32. (a) X. Huang, C. J. Margulis and B. J. Berne, Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces? Journal of Physical Chemistry B 107 (2003) 11742-11748; (b) G. Graziano, Comment on “Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces?” Journal of Physical Chemistry B 108 (2004) 9371-9372; (c) X. Huang, C. J. Margulis and B. J. Berne, Reply to the Comment on “ Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces?", Journal of Physical Chemistry B 108 (2004) 9373-9374. [Back]
  33. M. C. Stumpe and H. Grubmüller, Aqueous urea solutions: structure, energetics, and urea aggregation, Journal of Physical Chemistry B 111 (2007) 6220-6228. [Back]
  34. K. Abe, Y. Ootake and T. Shigenari, Raman scattering study of proton ordered ice XI single crystal, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 101-108; K. Abe and T. Shigenari, Raman spectra of proton ordered phase XI of ICE I. Translational vibrations below 350 cm−1, Journal of Chemical Physics,134 (2011) 104506. [Back]
  35. A. Baranyai, A. Bartók and A. A. Chialvo, On the performance of simple planar models of water in the vapor and the ice phases, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 109-115. [Back]
  36. (a) T. C. Hansen, A. Falenty and W. F. Kuhs, Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 201-208; (b) E. B. Moore and V. Molinero, Is it cubic? Ice crystallization from deeply supercooled water, Physical Chemistry Chemical Physics, 13 (2011) 20008-20016; (c) T. L. Malkin, B. J. Murray, A. V. Brukhno, J. Anwar and C. G. Salzmann, Structure of ice crystallized from supercooled water, Proceedings of the National Academy of Sciences, 109 (2012)1041-1045; Correction for Malkin et al., Structure of ice crystallized from supercooled water, Proceedings of the National Academy of Sciences, 109 (2012) 4020; (d) W. F. Kuhs, C. Sippel, A. Falenty and T. C. Hansen, Extent and relevance of stacking disorder in “ice Ic”, Proceedings of the National Academy of Sciences, 109 (2012) 21259-21264; (e) T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering and T. F. Whale, Stacking disorder in ice I, Physical Chemistry Chemical Physics, 17 (2015) 60-76. [Back, 2, 3]
  37. S. Jenkins, S. R. Kirk and P. W. Ayers, Topological transitions between ice phases, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp. 248-256. [Back]
  38. M. Le Berre and Y. Pomeau, Theory of ice-skating, J. Non-Linear Mechanics 75 (2015) 77-86; http://arxiv.org/pdf/1502.00323v1.pdf. [Back]
  39. M. Nakada, O. Yamamuro, K. Maruyama and M. Misawa, Hydrophobic hydration and anomalous excess partial molar volume of tert-butyl alcohol–water mixture studied by quasielastic neutron scattering, Journal of Phys. Soc. Japan 76 (2007) 054601. [Back]
  40. M. Matsumoto, Relevance of hydrogen bond definitions in liquid water, Journal of Chemical Physics,126 (2007) 054503. [Back]
  41. A. Baranyai and A. Bartók, Classical interaction model for the water molecule, Journal of Chemical Physics,126 (2007) 184508. [Back]
  42. S. Noda, T. Funami, M. Nakauma, I. Asai, R. Takahashi, S. Al-Assaf, S. Ikeda, K. Nishinari and G. O. Phillips, Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behaviour in aqueous systems. 1. Gellan gum with various acyl contents in the presence and absence of potassium, Food Hydrocolloids (2007) doi:10.1016/ j.foodhyd.2007.06.007. T. Funami, M. Hiroe, S. Noda, I. Asai, S. Ikeda and K. Nishinari, Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations, Food Hydrocolloids 21 (2007) 617–629. [Back]
  43. (a) R. Zangi, M. Hagen and B. J. Berne, Effect of ions on the hydrophobic interaction between two plates, Journal of the American Chemical Society, 129 (2007) 4678-4686. (b) R. Zangi and B. J. Berne, Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions, Journal of Physical Chemistry B 110 (2006) 22736-22741. [Back]
  44. E. L. Hommel, J. K. Merle, G. Ma, C. M. Hadad and H. C. Allen, Spectroscopic and computational studies of aqueous ethylene glycol solution surfaces, Journal of Physical Chemistry B 109 (2005) 811-818. [Back]
  45. A. K. Soper, Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water, Journal of Physics: Condensed Matter, 19 (2007) 335206. [Back, 2, 3]
  46. K. Mizuse, A. Fujii and N. Mikami, Long range influence of an excess proton on the architecture of the hydrogen bond network in large-sized water clusters, Journal of Chemical Physics, 126 (2007) 231101. [Back, 2]
  47. A. Beneduci, Which is the effective time scale of the fast Debye relaxation process in water? Journal of Molecular Liquids, 138 (2007) 55-60. [Back]
  48. M. Babor, V. Sobolev and M. Edelman, Conserved positions for ribose recognition: importance of water bridging interactions among ATP, ADP and FAD-protein complexes. Journal of Molecular Biology, 323 (2002) 523-532. [Back]
  49. A. M. J. J. Bonvin, M. Sunnerhagen, G. Otting and W. F. van Gunsteren, Water molecules in DNA recognition II: A molecular dynamics view of the structure and hydration of the trp operator, Journal of Molecular Biology, 282 (1998) 859-873. [Back]
  50. G.-H. Zuo, J. Hu and H.-P. Fang, Protein folding under mediation of ordering water: an off-lattice Go-loke model study, Chin. Physics Letters, 24 (2007) 2426-2429. [Back] [Back to Top to top of page]
  51. S. Y. Liem,1 P. L. A. Popelier and M. Leslie, Simulation of liquid water using a high-rank quantum topological electrostatic potential, International Journal of Quantum Chem. 99 (2004) 685-694. [Back]
  52. F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C.-Y. Mou and S.-H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proceedings of the National Academy of Sciences, 104 (2007) 424-428. [Back]
  53. M. Tehei, B. Franzetti, K. Wood, F. Gabel, E. Fabiani, M. Jasnin, M. Zamponi, D. Oesterhelt, G. Zaccai, M. Ginzburg and B.-Z. Ginzburg, Neutron scattering reveals extremely slow cell water in a Dead Sea organism, Proceedings of the National Academy of Sciences, 104 (2007) 766-771. [Back]
  54. P. Jedlovszky, L. B. Pártay, A. P. Bartók, G. Garberoglio and R. Vallauri, Structure of coexisting liquid phases of supercooled water: Analogy with ice polymorphs, Journal of Chemical Physics,126 (2007) 241103. [Back]
  55. N. Ogawa and Y. Matsuura, Theoretical calculation of the surface energy of water, arxiv.org 0411077v3 (2004). [Back]
  56. R. S. Funk and J. P. Krise, Exposure of cells to hydrogen peroxide can increase the intracellular accumulation of drugs, Mol. Pharmaceutics, 4 (2007) 154 -159. [Back]
  57. (a) S. Patchkovskii and J. S. Tse, Thermodynamic stability of hydrogen clathrates, Proceedings of the National Academy of Sciences, 100 ( 2003) 14645-14650; (b) K. Katsumasa, K. Koga, and H. Tanaka, On the thermodynamic stability of hydrogen clathrate hydrates, Journal of Chemical Physics,127 (2007) 044509. [Back]
  58. A. F. G. Cicero, G. Derosa, M. Manca, M. Bove, C. Borghi and A. V. Gaddi, Different effect of psyllium and guar dietary supplementation on blood pressure control in hypertensive overweight patients: a six-month, randomized clinical trial, Clin. Exp. Hypertension 29 (2007) 383-394. [Back]
  59. R. Vácha, P. Slavíek, M. Mucha, B. J. Finlayson-Pitts and P. Jungwirth, Adsorption of atmospherically relevant gases at the air/water interface: free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2Journal of Physical Chemistry A 108 (2004) 11573-11579. [Back]
  60. Q. Shi, S. D. Belair, J. S. Francisco and S. Kais, On the interactions between atmospheric radicals and cloud droplets: A molecular picture of the interface, Proceedings of the National Academy of Sciences, 100 (2003) 9686-9690. [Back]
  61. W. Gan, D. Wu, Z. Zhang, Y. Guo and H. Wan, Orientation and motion of water molecules at air/water interface, Chinese Journal of Chemical Physics,19 (2006) 20-24, arXiv:cond-mat/0508525v1. [Back, 2]
  62. M. Smits, A. Ghosh, M. Sterrer, M. Müller and M. Bonn, Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface, Physical Review Letters 98 (2007) 098302. [Back]
  63. P. Liu, E. Harder and B. J. Berne, Hydrogen-bond dynamics in the air-water interface, Journal of Physical Chemistry B 109 (2005) 2949-2955. [Back]
  64. A. Graciaa, G. Morel, P. Saulner, J. Lachaise and R. S. Schechter, The ζ-potential of gas bubbles, J. Colloid and Interface Science, 172 (1995) 131-136. [Back]
  65. C. Yang, T. Dabros,  D. Li, J. Czarnecki and J. H. Masliyah, Measurement of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method, J. Colloid and Interface Science, 243 (2001) 128-135. [Back]
  66. R. S. Schechter, A. Gracia, J. Lachaise, The electrical state of a gas/water interface, J. Colloid and Interface Science, 204 (1998) 398-399. [Back, 2]
  67. H. Ohshima, T. W. Healy and L. R. White, Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle, J. Colloid and Interface Science, 90 (1982) 17-26, as cited by K. Ohsawa, M. Murata and H. Ohshima, Zeta potential and surface charge density of polystyrene-latex; comparison with synaptic vesicle and brush border membrane vesicle. Colloid Polymer Science 264 (1986) 1005-1009, noting the missing ionic strength term in equation (7). [Back]
  68. S. Ljunggren and  J. C. Eriksson, The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction, Colloids and Surfaces A, 129-130 (1997) 151-155. [Back]
  69. N. F. Bunkin, N. V. Suyazov and D. Yu. Tsipenyuk, Small-angle scattering of laser radiation by stable micron particles in twice-distilled water, Quantum Electron. 35 (2005) 180-184. N. F. Bunkin, K. V. Indukaev and P. S. Ignat'ev, Spontaneous self-organization of microbubbles in a liquid, J. Exp. Theor. Phys. 104 (2007) 486-498. N. F. Bunkin, N. V. Suyazov, A. V. Shkirin, P. S. Ignatiev and K. V. Indukaev, Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix, Journal of Chemical Physics,130 (2009) 134308. N. F. Bunkin, N. V. Suyazov, A. V. Shkirin, P. S. Ignat'ev and K. V. Indukaev, Cluster structure of stable dissolved gas nanobubbles in highly purified water, J. Exp. Theo. Phys. 108 (2009) 800-816. [Back]
  70. S. Yang, S. M. Dammer, N. Bremond, H. J. W. Zandvliet, E. S. Kooij and D. Lohse, Characterization of nanobubbles on hydrophobic surfaces in water, Langmuir, 23 (2007) 7072-7077; X. H. Zhang, A. Khan and W. A. Ducker, A nanoscale gas state, Physical Review Letters 98 (2007) 136101; L. J. Zhang, Y. Zhang, X. H. Zhang, Z. X. Li, G. X. Shen, M. Ye, C. H. Fan, H. P. Fang and J. Hu, Electrochemically controlled formation and growth of hydrogen nanobubbles, Langmuir, 22 (2006) 8109-8113; X. H. Zhang, A. Quinn and W. A. Ducker, Nanobubbles at the interface between water and a hydrophobic solid, Langmuir, 24 (2008) 4756-4764. [Back]
  71. R. C. Tolman, The effect of droplet size on surface tension, Journal of Chemical Physics,17 (1949) 333-337. G. Graziano, Significance of the Tolman length at a molecular level, Chemical Physics Letters, 497 (2010) 33-36. [Back]
  72. B. M. Borkent, S. M. Dammer, H. Schönherr, G. J. Vancso and D. Lohse, Superstability of surface nanobubbles, Physical Review Letters 98 (2007) 204502, arxiv:physics/0703203v1. [Back]
  73. R. A. Pushkarova, R. G. Horn, Surface forces measured between an air bubble and a solid surface in water, Colloids and Surfaces A, 261 (2005) 147-152. [Back]
  74. N. Mishchuk, J. Ralston and D. Fornasiero, Influence of dissolved gas on van der Waals forces between bubbles and particles, Journal of Physical Chemistry A 106 (2006) 689-696. [Back]
  75. M. E. Leunissen, A. van Blaaderen, A. D. Hollingsworth, M. T. Sullivan, P. M. Chaikin, Electrostatics at the oil–water interface, stability, and order in emulsions and colloids, Proceedings of the National Academy of Sciences, 104 (2007) 2585-2590. [Back] [Back to Top to top of page]
  76. O. Konrad and T. Lankau, Hydrophobic solvation: aqueous methane solutions, Journal of Chemical Education, 84 (2007) 864-869. Other aspects of this paper have been questioned: T. P. Silverstein, Hydrophobic solvation NOT via clathrate water cages, Journal of Chemical Education, 85 (2008) 917-918; T. Lankau, The author replies, Journal of Chemical Education, 85 (2008) 918; F. Gharagheizi, A. Eslamimanesh, A. H. Mohammadi and D. Richon, Empirical method for estimation of Henry’s law constant of non-electrolyte organic compounds in water, Journal of Chem. Thermodyn. 47 (2012) 295-299. [Back, 2]
  77. Y-R. Huang, Y-C. Hung, S-Y. Hsu, Y-W. Huang and D-F. Hwang, Application of electrolyzed water in the food industry, Food Control 19 (2007) 329-345. [Back]
  78. L. Holysz, A. Szczes and E. Chibowski, Effects of static magnetic field on water and electrolyte solutions, J. Colloid and Interface Science, 316 (2007) 996-1002. [Back]
  79. J. V. Leyendekkers, Aqueous solutions. 1. Structural thermodynamic internal pressure of water, Journal of Physical Chemistry 87 (1983) 3327-3333. [Back, 2]
  80. I. Vavruch, On the evaluation of the surface tension-pressure coefficient for pure liquids, J. Colloid and Interface Science, 169 (1995) 249-250. [Back, 2]
  81. M. Stomp, J. Huisman, L. J. Stal and H. C. P. Matthijs, Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule, ISME J. 1 (2007) 271-282. [Back]
  82. R. Massoudi and A. D. King, Effect of pressure on the surface tension of water. Adsorption of low molecular weight gasses on water at 25°. Journal of Physical Chemistry 78 (1974) 2262-2266. [Back]
  83. O. K. Rice, The effect of pressure on surface tension, Journal of Chemical Physics,15 (1947) 333-335. [Back]
  84. A. Botti, F. Bruni, M. A. Ricci, A. Pietropaolo, R. Senesi and C. Andreani, Structure and single proton dynamics of bulk supercooled water, Journal of Molecular Liquids, 136 (2007) 236-240. [Back]
  85. K. Ariga, T. Michinobu, T. Nakanishi and J. P. Hill, Chiral recognition at the air-water interface, Curr. Opin. Colloid Interface Science 13 (2008) 23-30. [Back]
  86. F.-M. Raoult, On vapor pressure and on the freezing point of saline solutions, (in French) Comptes Rendus, 87 (1878) 167-169; F.-M. Raoult, General law of the freezing of solutions, (in French) Comptes Rendus, 95 (1882) 1030-1033. [Back]
  87. K. S. Pitzer, Thermodynamics, 3rd Ed. ( McGraw-Hill, Inc, New York, 1995). [Back]
  88. V. N. Afanasiev, A. N. Ustinov and I. Y. Vashurina, Definition of hydration parameters in the region of maximal solvent density, J Solution Chem. 36 (2007) 1157-1166. [Back]
  89. C. G. Ning, B. Hajgató, Y. R. Huang, S. F. Zhang, K. Liu, Z. H. Luo, S. Knippenberg, J. K.
    Deng and M. S. Deleuze, High resolution electron momentum spectroscopy of the valence orbitals of water, Chemical Physics, 343 (2008) 19-30. [Back]
  90. M. Mezger, H. Reichert, S. Schöder, J. Okasinsk, H. Schröder, H. Dosch, D. Palms, J. Ralston and Veijo Honkimäki, High-resolution in situ x-ray study of the hydrophobic gap at the water–octadecyl trichlorosilane interface, Proceedings of the National Academy of Sciences, 103 (2006) 18401-18404; A. P. Willard and D.Chandler, The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like, J. Chemical Physics, 141 (2014) 18C519. [Back]
  91. E. Pechkova, V. Sivozhelezov and C. Nicolini, Protein thermal stability: The role of protein structure and aqueous environment, Arch. Biochem. Biophys. 466 (2007) 40-48. [Back]
  92. O. E. Pérez, C. C. Sánchez, A. M.R. Pilosof and J. M. R. Patino, Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface, Food Hydrocolloids 22 (2008) 387-402. [Back]
  93. Q. Li, N. Wang and Z. Yu, Effect of hydration on the C-H· · ·O hydrogen bond: A theoretical study, Journal of Molecular Structure, Theochem 847 (2007) 68-74; S. Scheiner, Cooperativity of multiple H-bonds in influencing structural and spectroscopic features of the peptide unit of proteins, Journal of Molecular Structure, 976 (2010) 49-55. [Back, 2]
  94. D. Wu, Y-Z. Wang and J-X. Zhang, Contact to contact transition: Direct measurement of interaction between a solid probe and a planar air-water interface, Chin. Physics Letters, 24 (2007) 2914-2917. [Back]
  95. L. A. Bulavin, T. V. Lokotosh and N. P. Malomuzh, Role of the collective self-diffusion in water and other liquids, Journal of Molecular Liquids, 137 (2007) 1-24. [Back]
  96. S. F. Dec and S. I. Gill, Enthalpies of aqueous solutions of noble gases at 25 °C, J. Solution Chemistry, 14 (1985) 417-429. [Back]
  97. D. Bagchi, A. Kumar and R. Menon, Tuning phase transitions and realization of special thermodynamic states in alcohol–water mixtures by the addition of ions, Physica A 384 (2007) 1-9. [Back, 2]
  98. F. Jin, J. Li, X. Ye and Chi Wu, Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of α-Cyclodextrin, Journal of Physical Chemistry B 111 (2007) 11745-11749. [Back]
  99. C. A. Hunniford, S. W. J. Scully, K. F. Dunn and C. J. Latimer, Fragment anion spectroscopy of water in the inner and outer valence regions, Journal of Phys. B: At. Mol. Opt. Phys. 40 (2007) 1225-1232. [Back]
  100. E. A. Zheligovskaya, G. G. Malenkov, Crystalline water ices, Russian Chemical Reviews, 75 (2006) 57-76. [Back, 2] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2007 and last updated by Martin Chaplin on 15 September, 2021


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License